The Phase Field Crystal Method: Strengths and Weaknesses

A. Yamanaka¹, E. Alster, K.S. McReynolds, and P.W. Voorhees

Department of Materials Science and Engineering Engineering Sciences and Applied Mathematics Northwestern University

¹Division of Advanced Mechanical Systems Engineering Institute of Engineering Tokyo University of Agriculture and Technology

Outline

- Introduction to the phase field crystal model
- Creating crystal structures
- Grain growth in 3D
- Future outlook, remaining challenges

Atomistic Simulation Methods

PFC Model Elder et al. (Swift-Hohenberg type free energy)

Lattice vibration (ps)Fundamental physics

Cu-Au, M. Asta, J.J Hoyt

- Mean field theory: φ : Time averaged density
- Atomistic length scale
- Diffusive time scale (μ s-ms)
- Multiple crystalline planes
- Elasticity
- Dislocations

Traditional Phase Field Theories

Minimize *F*:

$$F(\phi) = \int \left[f(\phi) + K \left(\frac{\partial \phi}{\partial x} \right)^2 \right] dx$$

Two-phase mixture

Periodic Systems

$$F(\phi) = \int \left[f(\phi) + K \left(\frac{\partial \phi}{\partial x} \right)^2 \right] dx$$

$$F(\phi) = \int \left[f(\phi) - K \left(\frac{\partial \phi}{\partial x} \right)^2 \right] dx$$

$$F(\phi) = \int \left[f(\phi) - K \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial^2 \phi}{\partial x^2} \right) \right] dx$$

$$\downarrow$$

$$F(\phi) = \int \left[f(\phi) - K \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial^2 \phi}{\partial x^2} \right)^2 \right] dx$$

Periodic Systems

$$F(\phi) = \int \left[f(\phi) - q_o^2 \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial^2 \phi}{\partial x^2} \right)^2 \right] dx$$

$$f(\phi) = \frac{1}{2}(-\epsilon + q_o^4)\phi^2 + \frac{1}{4}\phi^4$$

$$F(\phi) = \int \left[\frac{\phi}{2} \left(-\epsilon + \left(q_o^2 + \nabla^2\right)^2\right)\phi + \frac{1}{4}\phi^4\right] dx$$

Swift-Hohenberg equation

PFC 2D Phase Diagram

K.R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004)

From Ramakrishnan and Youssoff, expanding around a liquid of uniform density relative to an ideal gas:

$$\frac{F}{k_B T \rho_o} = \int \left[(1 + n(\mathbf{r})) \ln (1 + n(\mathbf{r})) - n(\mathbf{r}) \right] d\mathbf{r} - \frac{1}{2} \int n(\mathbf{r}) C \left(|\mathbf{r} - \mathbf{r}'| \right) n(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$$

$$n(\mathbf{r}) = \left(\rho(\mathbf{r}) - \rho_o \right) / \rho_o$$

Advantage: density field evolves on diffusional time scales Disadvantage: Minimize F, in the crystal:

Expand about the mean density of the liquid:

$$\int \left[(1+n(\mathbf{r})) \ln \left(1+n(\mathbf{r})\right) - n(\mathbf{r}) \right] d\mathbf{r} \sim \int \left[\frac{1}{2} n(\mathbf{r})^2 - a_1 \frac{1}{6} n(\mathbf{r})^3 + a_2 \frac{1}{12} n(\mathbf{r})^4 \right] d\mathbf{r}$$

Require liquid to be present to lowest order in n: $a_1 = 0, a_2 = 3$

Expand the two-point correlation function,

$$-rac{1}{2}\int n(\mathbf{r})C\left(|\mathbf{r}-\mathbf{r}'|
ight)n(\mathbf{r}')d\mathbf{r}d\mathbf{r}'$$

Elder, Provatas, Berry, Stefanovic, Grant, PRE 2007

PFC parameter fitting

,

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (ergs/cm ²)	177.0 [1]	207.1	165.7
surface energy (110) (ergs/cm ²)	173.5 [1]	201.7	161.5
surface energy (111) (ergs/cm ²)	173.4 [1]	194.8	157.2
Anisotropy (%)	1.0 [1]	1.3	1.3
Expansion upon melting (Å ³ /atom)	0.38 [3]	2.07	0.43
Solid bulk modulus (GPa)	105.0 [4]	22.2	94.5
Liquid bulk modulus (GPa)	96.2 [5]	18.6	93.2

[1] Wu, Karma, PRB, 76, 174107 (2007)

- [2] Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009).
- [3] Mendelev, Han, Srolovitz, Ackland, Sun, Asta, Phil. Mag. 83, 3977 (2003)
- [4] Dever, J. Appl. Phys., **43**, 3293 (1972):
 - Adams, Agosta, Leisure, Ledbetter, J. Appl. Phys. 100, 113530 (2006)
- [5] Tsu, Takano, 88th Spring Conference (Japan Institute of Metals, Sendai 1981), 88, p. 86: Itami, Shimoji, J. Phys. F: Met. Phys, 14, L15 (1984).

(due to Ken Elder)

PFC parameter fitting

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (ergs/cm ²)	177.0 [1]	207.1 17%	165.7 <mark>6%</mark>
surface energy (110) (ergs/cm ²)	173.5 [1]	201.7 <mark>16%</mark>	161.5 <mark>7%</mark>
surface energy (111) (ergs/cm ²)	173.4 [1]	194.8 <mark>12%</mark>	157.2 <mark>9%</mark>
Anisotropy (%)	1.0 [1]	1.3 <mark>30%</mark>	1.3 <mark>30%</mark>
Expansion upon melting (ų/atom)	0.38 [3]	2.07	0.43
Solid bulk modulus (GPa)	105.0 [4]	22.2	94.5
Liquid bulk modulus (GPa)	96.2 [5]	18.6	93.2

[1] Wu, Karma, PRB, **76**, 174107 (2007)

percent error

- [2] Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009).
- [3] Mendelev, Han, Srolovitz, Ackland, Sun, Asta, Phil. Mag. 83, 3977 (2003)
- [4] Dever, J. Appl. Phys., **43**, 3293 (1972):
 - Adams, Agosta, Leisure, Ledbetter, J. Appl. Phys. 100, 113530 (2006)
- [5] Tsu, Takano, 88th Spring Conference (Japan Institute of Metals, Sendai 1981), 88, p. 86: Itami, Shimoji, J. Phys. F: Met. Phys, 14, L15 (1984).

(due to Ken Elder)

* PFC parameter fitting

Fitting to Iron, T = 1772 K

Quantity	Experiment/ MD	5 parameter [1]	6 parameter [2]
surface energy (100) (ergs/cm ²)	177.0 [1]	207.1	165.7
surface energy (110) (ergs/cm ²)	173.5 [1]	201.7	161.5
surface energy (111) (ergs/cm ²)	173.4 [1]	194.8	157.2
Anisotropy (%)	1.0 [1]	1.3	1.3
Expansion upon melting (ų/atom)	0.38 [3]	2.07 <mark>440%</mark>	0.43 <mark>13%</mark>
Solid bulk modulus (GPa)	105.0 [4]	22.2 <mark>79%</mark>	94.5 <mark>10%</mark>
Liquid bulk modulus (GPa)	96.2 [5]	18.6 <mark>81%</mark>	93.2 <mark>3%</mark>

[1] Wu, Karma, PRB, **76**, 174107 (2007)

percent error

- [2] Jaatinen, Achim, Elder, Ala-Nissilä, PRB 80, 031602 (2009).
- [3] Mendelev, Han, Srolovitz, Ackland, Sun, Asta, Phil. Mag. 83, 3977 (2003)
- [4] Dever, J. Appl. Phys., **43**, 3293 (1972):
 - Adams, Agosta, Leisure, Ledbetter, J. Appl. Phys. 100, 113530 (2006)
- [5] Tsu, Takano, 88th Spring Conference (Japan Institute of Metals, Sendai 1981), 88, p. 86: Itami, Shimoji, J. Phys. F: Met. Phys, 14, L15 (1984).

(due to Ken Elder)

Solid-Liquid Interfacial Density Profile

By expanding the structure function of Fe to eighth order, BCC crystal:

Results agree well with MD simulations using Finnis-Sinclair potential A. Jaatinen C. V. Achim, K. R. Elder, T. Ala-Nissila

Beyond Swift-Hohenberg

Free energy density:

$$F(\mathbf{r}) = \frac{n^2(\mathbf{r})}{2} - \frac{\nu n^3(\mathbf{r})}{6} + \frac{\xi n^4(\mathbf{r})}{12} - \frac{n(\mathbf{r})}{2} \int_V C_2(|\mathbf{r} - \mathbf{r}'|) n(\mathbf{r}') d\mathbf{r}$$

Construct in Fourier space: $\hat{C}_2(k)$

M. Greenwood, J. Rottler, and N. Provatas, Phys. Rev. E 83, 031601 (2011)

K. Barkan, H. Diamant, R. Lifshitz, PRE (2011)

Generating Other Crystal Structures

Real space approach:

 $F = \int \left\{ \frac{n^2(\mathbf{r})}{2} \left[-\epsilon + (\nabla^2 + 1)^2 \right] n(\mathbf{r}) + \left[-\epsilon_n + (\nabla^2 + k_n)^2 \right]^n n(\mathbf{r}) + \frac{n^4(\mathbf{r})}{4} \right\}$

Successfully generated:

- BCC
- FCC (n=1, Wu, Adland and Karma PRE 2010)
- Square lattice (Wu, Plapp and Voorhees, J. Phys. Cond Mat.)
- All Bravais lattices in 2D (n=2, Mkhonta, Elder and Huang, PRL 2013)

Complex Crystal Structures

$$F[n] = \int \left[\frac{1}{2}n^2 - \frac{1}{6}n^3 + \frac{1}{12}n^4\right] d\mathbf{r} - \frac{1}{2}\int n(\mathbf{r})C_2 * n d\mathbf{r}$$
$$-\frac{1}{6}\int \int \int n(\mathbf{r})C_3(\mathbf{r} - \mathbf{r}', \mathbf{r} - \mathbf{r}'')n(\mathbf{r}')n(\mathbf{r}'')d\mathbf{r}d\mathbf{r}'d\mathbf{r}'' \qquad \text{M. Seymour and N. Provatas, PRB (2016)}$$

Focus: stability angles between atoms to produce a better model of graphene

Approximate the three point correlation as

$$C_3(\mathbf{r}_1, \mathbf{r}_2) = \sum_i C_3^{(i)}(\mathbf{r}_1) C_3^{(i)}(\mathbf{r}_2)$$

Complex Crystal Structures

$$F[n] = \int \left[\frac{1}{2}n^2 - \frac{1}{6}n^3 + \frac{1}{12}n^4\right] d\mathbf{r} - \frac{1}{2}\int n(\mathbf{r})C_2 * n d\mathbf{r}$$
$$-\frac{1}{6}\int\int\int n(\mathbf{r})C_3(\mathbf{r} - \mathbf{r}', \mathbf{r} - \mathbf{r}'')n(\mathbf{r}')n(\mathbf{r}'')d\mathbf{r}d\mathbf{r}'d\mathbf{r}''$$
See Eli Alster's Poster

Two point: Interplanar length scales

Three point: Interplanar angles

How to construct C_2 , C_3 ?

Ex: Single component CaF₂, fcc with F in tetrahedral voids, Al₂Cu (θ')

• Look at structure factor

$$A_{(\mathfrak{h}\mathfrak{K}\mathfrak{l})} = \begin{cases} 12 & \text{if } \mathfrak{h} + \mathfrak{K} + \mathfrak{l} = 4N \\ & \text{and } \mathfrak{h}, \, \mathfrak{K}, \, \mathfrak{l} \text{ are all even} \\ 4 & \text{if } \mathfrak{h}, \, \mathfrak{K}, \, \mathfrak{l} \text{ are all odd} \\ -4 & \text{if } \mathfrak{h} + \mathfrak{K} + \mathfrak{l} = 4N + 2 \\ & \text{and } \mathfrak{h}, \, \mathfrak{K}, \, \mathfrak{l} \text{ are all even} \\ 0 & \text{otherwise.} \end{cases}$$

Conventionally: When A_(hkl) ≠ 0, make a peak at q(hkl) in C₂. In CaF₂, {111}, {200}, ...

Choosing C₂

Problem: {111}, {200}, are the same wavevectors as for fcc!

Choosing C₃

- Use FCC \hat{C}_2 , distinguish between structures with C_3
- Convenient to construct C_3 in Fourier space

$$\hat{C}_{3}(\mathbf{k}_{p},\mathbf{k}_{q}) = R(k_{p})R(k_{q})\sum_{l=0}^{l_{\max}}\alpha_{l}P_{l}(\hat{\mathbf{k}}_{p}\cdot\hat{\mathbf{k}}_{q})$$

$$F_{3}/V = -\frac{1}{6}\sum_{pqr}\hat{C}_{3}(k_{p},k_{q},\hat{\mathbf{k}}_{p}\cdot\hat{\mathbf{k}}_{q})A_{p}A_{q}A_{r}\delta_{\mathbf{k}_{p}+\mathbf{k}_{q}+\mathbf{k}_{r},\mathbf{0}}$$

- Aim: Design \hat{C}_3 such $F_3(CaF_2) < F_3(FCC)$
- How: They differ in their three-point structure
 - FCC: $A_{(111)}A_{(1\overline{11})}A_{(2\overline{0}0)} > 0$
 - CaF_2 : $A_{(111)}A_{(1\overline{11})}A_{(2\overline{0}0)} < 0$

Choosing C₃

$$\hat{C}_{3}(\mathbf{k}_{p},\mathbf{k}_{q}) = R(k_{p})R(k_{q})\sum_{l=0}^{l_{\text{max}}} \alpha_{l}P_{l}(\hat{\mathbf{k}}_{p}\cdot\hat{\mathbf{k}}_{q})$$

$$F_{3}/V = -\frac{1}{6}\sum_{pqr}\hat{C}_{3}(k_{p},k_{q},\hat{\mathbf{k}}_{p}\cdot\hat{\mathbf{k}}_{q})A_{p}A_{q}A_{r}\delta_{\mathbf{k}_{p}+\mathbf{k}_{q}+\mathbf{k}_{r},\mathbf{0}}$$

Choose α_l so that there is a negative peak at $\hat{\bf k}_p\cdot\hat{\bf k}_q=(111)\cdot(1\bar{1}\bar{1})=-1/3$

Crystal Structures

- Disordered CaF₂, simple cubic, diamond cubic, graphene layers
- Perovskite:

PFC: Ordered Crystal Structures

Alster, Eli, et al. Physical Review E 95.2 (2017): 022105.

The PFC and Classical Potentials

- Classical potentials are created by fitting to known materials parameters
- This can be a challenging task, e.g. Si: simulations of bulk Si employ Stillinger-Weber potentials, but simulations of Si-vacuum surfaces employ Tersoff potentials
- The problem is similar in the PFC where free energy functions need to be chosen to yield a given set of properties or crystal structures

Dynamics

Free energy functional:

$$F=\int\left\{rac{n({f r})}{2}\left[-\epsilon+\left(
abla^2+1
ight)^2
ight]n({f r})+rac{1}{4}n^4({f r})
ight\}d{f r}$$

Free energy decrease, completely diffusive dynamics:

$$rac{\partial n}{\partial t} =
abla \cdot
abla rac{\delta F}{\delta n} =
abla \cdot
abla \left\{ \left[-\epsilon + (
abla^2 + 1)^2
ight] n + n^3
ight\}$$

Free energy decrease, two time scales: elasticity and diffusion,

$$\beta \frac{\partial^2 n}{\partial t^2} + \alpha \frac{\partial n}{\partial t} = \nabla \cdot \nabla \{ [-\epsilon + (\nabla^2 + 1)^2] n + n^3 \}$$

Stefanovic, Haataja and Provatas, PRL, 2006

Energy of low angle grain boundaries

Coupling between grain boundary motion and grain rotation

Continuity of the lattice across the grain boundary results in a coupling of the normal motion of a grain boundary with the tangential motion of the lattice.

$$v_t = \beta v_n$$

$$\beta = 2\tan(\theta/2) \approx \theta$$

Single Grain

Wu KA, Voorhees PW. Acta Materialia. 2012;**60**:407-19.

Lattice Coupling Induced Rotation

Molecular Dynamics Simulations

Z.T. Trautt and Y. Mishin, Acat Mater. **60** 2407 (2012)

M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren, W.C. Carter, Acta Mater. **54** 1707 (2006)

3D Structure of Low Angle Planar Boundaries in BCC Crystals

Fig. 19-25. Twist boundary on a (110) plane in a bcc crystal, showing a reaction in a lozenge-shaped net to form the dislocations $b_3 = [001]$.

J. P. Hirsh and J. Lothe, Theory of dislocations, McGraw-Hill, (1968), p. 663.

S. Amelinckx and W. Dekeyser, Solid State Physics, 8 (1959), p. 349.

BCC Iron

Figure 9.9 Transmission electron micrograph of extensive dislocation networks in body-centred cubic iron. Each network consists of three sets of dislocations, Burgers vectors $\frac{1}{2}\langle 111 \rangle$, $\frac{1}{2}\langle 1\overline{1}\overline{1} \rangle$ and $\langle 100 \rangle$. The plane of the networks is almost parallel to the plane of the foil. (Courtesy Dadian and Talbot-Besnard.)

D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2001, p. 167.

10° Rotation about [110]

Initially Spherical Grain Embedded in Another

- Rotate about [110]
- Lattice constant BCC Fe
- 627³ grid using a GPU

4° Rotation about [110]

Seen from above, along [110]

Seen from side, along [100]

Dislocation reactions

10° Rotation about [110]

Seen from above, along [110]

Seen from side, along [100]

Dynamics: Surface area and Grain Rotation

Classical result: A(t) = A(0) - kt

Effects of Decreasing Temperature: 4° Rotation about [110]

Conclusions

- Phase field crystal method can extended to account for complex crystal structures
- Grain rotation during grain growth
- Grain translation during grain growth
- Dislocation climb is essential for grain shrinkage in this case
- Lower temperature simulations show the effects of dislocation interactions on grain growth

Challenges

- Vacancies: Fixing a realistic vacancy concentration
- Dynamics: Modeling solidification in a pure material; Separating the climb and glide of dislocations
- Fluctuations
- A method for choosing the potentials to model a specific material (see graphene)
- Defects: Is the core structure of dislocations realistic? Is dislocation nucleation realistic?