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Today

Goal: give an overview of AMD methods and of how they are used in
materials science.

I will mostly discuss the "base" methods, not the bleeding edge. I will
also concentrate of work carried out at LANL.

Please:
stop me at any time if I am going too slow, too fast, or if I am not
making sense.
ask questions as we go (don’t wait till the end).
let me know what interests you.
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Molecular dynamics: What?

Molecular Dynamics is the numerical solution of the equations of
motion of a set of atoms, given an interatomic potential V .

E.g., in the microcanonical ensemble (NVE), solve Newton’s equations
of motion:

∂xi

∂t
=

pi

m
∂pi

∂t
= −∂V

∂xi
= fi
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Molecular dynamics: Why?

MD produces [x(t),p(t)] trajectories in full atomistic detail.

MD:
is formally simple
is classically “exact” (for to a given V )
naturally handles complexity; the systems does the right thing at
the right time on its own
can be used to compute “any” (atomistic) thermodynamical or
dynamical property
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Molecular dynamics: Why?

With a good potential, we can use MD to interpret experiments, make
predictions, and gain physical insight at the atomic level.

MD simulations are experiments in themselves. They can be used to:
estimate physical quantities
parameterize higher-level models
test higher-level models
simply "see what happens"

Often, MD simulations show unexpected and surprising results and
drive the development of new theories.
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Molecular Dynamics

This sounds almost too good... So, what’s the catch?
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What do we need from MD?

Space:
Point defects : nm (∼ 102 atoms)
Nanostructure: tens of nm (∼ 105 atoms)
Microstructure: µm-cm (> 109 atoms)

Time:
Vibrations : fs-ps (∼ 102 timesteps)
“Unit” transitions: ns-µs (> 106 timesteps)
Microstructural evolution : ms-years (> 1012 timesteps)
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Molecular Dynamics: cost and limits

MD with empirical potentials is relatively cheap:

LJ potential: ∼ 2µs/atom/timestep
EAM potential: ∼ 5µs/atom/timestep
MEAM potential: ∼ 250µs/atom/timestep
Ab Initio: ∼ min/atom/timestep

E.g., for 1000 EAM atoms: ∼ 30 ns of MD per day on a single core.

For short-range potentials, MD is linear scaling : the cost of a
time-step is proportional to the number of atoms This means that, in
principle, you can do 30 ps per day on 106 atoms instead.
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Molecular Dynamics: cost and limits

What about parallel computers?

MD is inherently timewise serial: you can only distribute work within
one timestep.

Parallelization is usually achieved through spatial decomposition: each
processor handles atoms in a given region of space.
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The current scope of MD simulations

Figure: Spatial decomposition: each cell is handled by a different processor.
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Molecular Dynamics: cost and limits

Weak scaling (problem size scales with number of cores) is easy:
can do very large systems (trillions of atoms)

Strong scaling (scaling at constant problem size) is difficult:
cannot reach long times (� µs)
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Molecular Dynamics: Spatial decomposition

Figure: Scope of empirical MD simulations given a peta- (solid) or exa-flop
(shaded) computer for a few days.
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The Timescale Problem

When energy barriers
∆E � kBT , MD will not

provide relevant information
about long time, thermally

activated, behavior.
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MD’s dirty little secret

People rarely admit that their MD runs didn’t do anything interesting.
This is because it is relatively easy to force MD to do something:

Increase the temperature
Increase the stress
Carefully choose the “right” initial conditions

While such runs can be instructive, one should be extremely careful in
interpreting them.
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Possible solutions to the timescale problem

How can we then generate long, unbiased, trajectories with
atomistic accuracy?

Exploit separation of timescales between fast and slow
components of the dynamics

Transform the continuous dynamical problem of obtaining a
long MD trajectory into a discrete statistical problem of
obtaining correct state-to-state trajectories.
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Accelerating the dynamics
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Accelerating the dynamics

Traditional path-wise dynamical acceleration methods fall into two
broad classes:

1 The Kinetic Monte Carlo (KMC) way: Determine relevant states
and transitions, compute transition rates, and simulate kinetics.

2 The Accelerated Molecular Dynamics (AMD) way: Trick MD
into reducing the separation of timescales between fast and slow
components of the dynamics and renormalize the MD-time
accordingly.

Note that other techniques are emerging: coarse-grained methods,
multiscale techniques, etc. More about these later during the
workshop.

Danny Perez (LANL) LA-UR-13-29323 24 / 142



Plan

3 Accelerated Molecular Dynamics
Hyperdynamics
Temperature Accelerated Dynamics
Parallel Replica Dynamics

Danny Perez (LANL) LA-UR-13-29323 25 / 142



Accelerated Molecular Dynamics

The AMD creed:

Let MD trajectories find an appropriate way out of each state but coax
them into doing so more quickly. Use statistical mechanical concepts
(primarily rate theories) to unbias the results.
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Accelerated Molecular Dynamics
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Accelerated Molecular Dynamics

The goal is to decrease the separation of timescales between
transitions and relaxation by somehow decreasing the transition time.
The amount of compression is the boost.

AMD method perform best for strongly metastable systems:
large separation of timescales = large boost
small separation of timescales = small boost

Note that some methods, like KMC or phase field crystals, instead
move the relaxation times up towards the transition times. In MD, it is
not possible (or at least very difficult) to do so.
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Accelerated Molecular Dynamics: key points

The goal is the be just like MD, but to reach longer timescales.

Open-ended: specify an initial state and let the system evolve.
Stochastic: different runs can give different answers.
(Ideally) require minimal a priori knowledge of the system.
Typically more accurate than KMC.

But:
Only useful for system evolving through sequences of rare events.
Typically not as efficient as KMC.
Not designed for sampling.
(Currently) most useful for hard matter.
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Practical Considerations

You can/should use AMD if:
Rare event system (typical transition times > (�) 100 ps)

Transitions can be automatically detected and characterized

You are ready to put in some effort to tailor the methods/code. Not
always a black box.

You are typically interested in paths containing more than one
specific transition and/or you don’t know the relevant final states

Danny Perez (LANL) LA-UR-13-29323 30 / 142



Words of wisdom

You think you know the relevant final states? You probably don’t.

Being able to run long, unbiased, trajectories is invaluable.
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Accelerated Molecular Dynamics

Three AMD methods have been proposed by Arthur F. Voter et al. (see
Ann. Rep. Comp. Chem. 5, 79, (2009) for a review):

Hyperdynamics

Temperature Accelerated Dynamics (TAD)

Parallel Replica Dynamics (ParRep)
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Hyperdynamics

HYPERDYNAMICS
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Principle of Hyperdynamics

The Problem: the kinetics are slow because the landscape contains
deep potential energy wells

The Solution: modify the potential energy landscape to make the wells
shallower

In hyperdynamics [Voter, PRL 78, 3908 (1997)], you:

1 Run MD while adding a non-negative bias potential ∆Vb to the
original potential V

2 Map the MD-time t on V + ∆Vb unto the corresponding
hyper-time th (� t) on V
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Hyperdynamics: Illustration

kT
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Hyperdynamics: Derivation

Assume that the kinetics obey Transition State Theory (TST). The
transition rate out of a state A is given by:

kTST
A→ = 〈|vA|δA(r)〉A =

∫
dp
∫

drΘA(r)|vA|δA(r)e−βH(r,p)∫
dp
∫

drΘA(r)e−βH(r,p)
(1)

Introducing a non-negative bias potential ∆Vb, we get:

kTST
A→ =

∫
dp
∫

drΘA(r)|vA|δA(r)e−β[H(r,p)+∆Vb(r)]eβ∆Vb(r)∫
dp
∫

drΘA(r)e−β[H(r,p)+∆Vb(r)]eβ∆Vb(r)
, (2)

or, written in terms of averages on the biased landscape:

kTST
A→ =

〈|vA|δA(r)eβ∆Vb(r)〉Ab

〈eβ∆Vb(r)〉Ab

. (3)
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Hyperdynamics: Derivation

Require that the bias vanishes along all dividing surfaces around
A, i.e.:

∆Vb(r) = 0 when δA(r) 6= 0, (4)

then:

kTST
A→ =

〈|vA|δA(r)〉Ab

〈eβ∆Vb(r)〉Ab

=
kTST

Ab→

〈eβ∆Vb(r)〉Ab

. (5)

Transition rates (and time) on the biased potential are uniformly
increased by a factor 〈eβ∆Vb(r)〉Ab (� 1)!
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Hyperdynamics: The Algorithm

An hyperdynamics simulation proceeds as follows:

1 tMD ← 0, tH ← 0
2 Propagate the equations of motion forward by ∆t using the biased

potential V + ∆Vb

3 tMD ← tMD + ∆t , tH ← tH + ∆teβ∆Vb(r(t))

4 Go to step 2

When ∆Vb → 0, hyperdynamics reduces to molecular dynamics.

Danny Perez (LANL) LA-UR-13-29323 38 / 142



Hyperdynamics: The Hyper Clock
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Hyperdynamics: Illustration

kT

Condition 1: ∆Vb vanishes along all dividing surfaces
Condition 2: The system obeys TST on both V and V + ∆Vb
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Hyperdynamics: Illustration

BAD!
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Hyperdynamics: Illustration

kT

BAD!
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Hyperdynamics: bias potentials

The challenge is to design ∆Vb without having to know the possible
transitions pathways and without costing too much.

A few strategies have been proposed over the years:
Flat bias: ∆Vb = Vth − V if V < Vth, 0 otherwise. [Steiner, Phys.
Rev. B 57, 10236 (1998)]
Detect ridgetops using local curvature. [Voter, PRL 78, 3908
(1997)]
Bond-Boost: Assume that transitions signal themselves by a
significant change in some bond length. [Miron and Fichthorn, J.
Chem. Phys. 119, 6210 (2003)]

Danny Perez (LANL) LA-UR-13-29323 43 / 142



Hyperdynamics: bias potentials

The most obvious idea is to simply flatten out the potential below a
certain value Vth.

This is appealing, as it is safe if Vth is below the lowest barrier.
However, it does not work in many dimensions.

Danny Perez (LANL) LA-UR-13-29323 44 / 142



Hyperdynamics: bias potentials

To first order, each configurational degree of freedom stores
1
2kBT ∼ 0.025 eV.
With 100 degrees of freedom, the potential energy is on average
2.5 eV above the minimum.
If Vth < 2.5 eV: no boost
Else: unsafe if lowest barrier < Vth (almost always the case)
In many dimensions, a flat bias usually cannot be both safe
and provide boost.
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Hyperdynamics: bias potentials

Be careful with 1D intuitions...

For most systems, there is always plenty of thermal energy
available somewhere in the system. The slow step is for the
energy to be channeled into the right degrees of freedom.

A good bias potential has to be turned on when the system is "far"
from the energy minimum.
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Hyperdynamics: bias potentials
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Hyperdynamics: bias potentials

But we don’t know where the dividing surface is a priori...

If states are defined using basins of the potential energy surface
the following conditions define ridgetops around the state:

The lowest eigenvalue of the Hessian (Hi,j = ∂2V
∂xi∂xj

) is negative.
The projection of the force on the corresponding eigenvector is 0.

However, not all basins are fully surrounded by ridgetops...
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Hyperdynamics: bias potentials

One can write a bias potential that becomes 0 when the above
conditions are met.

The bias forces can be obtained through an iterative procedure
using ∇V alone [Voter, PRL 78, 3908 (1997)].

Good convergence can be expensive (∼ 100× more than a
standard force calculation).

That overhead limits the real boost, so this is rarely used in
practice.
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Hyperdynamics: bias potentials

For materials, transitions usually involve bonds stretching and
breaking by some amount εi =

ri−req,i
req,i

.

Define q as the minimal amount of stretch required for a transition
to occur.
The simplest bond-boost potential [following Miron and Fichthorn,
J. Chem. Phys. 119, 6210 (2003)] is:

∆Vb = min δVb,i(εi)

with

δVb,i ≥ 0 for εi ≤ q
= 0 otherwise
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Hyperdynamics: bias potentials

If any bond stretches past its critical value, the bias is zero.

Turns on even if every bond is stretched a bit.

If q is chosen properly, it is safe.

Fast and very easy to implement.

However, we do not know q a priori. We can often guess pretty
well, but we cannot be sure.

Important: q cannot be validated a posteriori.
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Hyperdynamics: bias potentials

MEP Hyperdynamics [Huang, Perez, Voter, JCP 143, 074113 (2015)]
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Hyperdynamics in practice

Pros:
Formally simple
Can provide very large boost
Simple bias functionals are available

Cons:
Difficult to strickly assess its validity
Efficiency drops with system size
Sensitive to low barriers

Hyperdynamics has been applied to: point defect diffusion, surface
growth, nanowire plasticity, temperature programmed desorption,
protein dynamics, etc. See Ann. Rep. Comp. Chem. 5, 79, (2009) for
references.
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Hyperdynamics: generalizations

Bridging hyperdynamics [Miron and Fichthorn, Phys. Rev. B 72,
035415 (2005) ]
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Hyperdynamics

kT

BAD!
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Hyperdynamics: generalizations

Self-learning hyperdynamics [Perez et al., Ann. Rep. Comp. Chem. 5,
79, (2009)]
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Hyperdynamics: generalizations

Self-learning hyperdynamics [Perez et al., Ann. Rep. Comp. Chem. 5,
79, (2009)]
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Hyperdynamics: generalizations

Local Hyperdynamics [Kim, Perez, Voter, JCP 139, 144110 (2013)]
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Hyperdynamics: generalizations

Local Hyperdynamics [Kim, Perez, Voter, JCP 139, 144110 (2013)]
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Application to nanowire stretching
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Hyperdynamics: example

We studied the elastic properties of silver nanowires using the
Self-Learning Bond-Boost Hyperdynamics (with C.-W. Pao).

(110) Nanowire
Voter-EAM Silver
T=300 K
Stretching rate: 105Å/s
(±100x faster than
experiment)
Discrete stretching
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Hyperdynamics: example

Roughly 5000 transitions
A lot of fast and complex
events (edge-running, slip)
Boost factor varies between
100 and 200
With more aggressive
book-keeping, an additional
factor of 3− 5 is possible.
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Hyperdynamics: example

Growth of Co/Cu(001) films with bond-boost hyperdynamics [Miron
and Fichthorn Phys. Rev. B 72, 035415 (2005) ]

Figure: Left: T=250K; right: T=310K. Simulation (hyper-)time: ∼ 0.5s.
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Temperature Accelerated Dynamics

TEMPERATURE ACCELERATED DYNAMICS
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Principle of Temperature Accelerated Dynamics (TAD)

One of the most common solution to a sluggish MD simulation is
to increase the temperature.

Makes things happen faster, but also makes the wrong things
happen.

This is especially problematic when many processes compete.

How to unbias the results?
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Principle of Temperature Accelerated Dynamics (TAD)

The Problem: the kinetics are slow because the thermal energy is
small compared to ∆E .

The Solution: increase the temperature

In TAD [Sorensen and Voter, JCP 112, 9599, (2000)], you:

1 Run MD at higher temperature and detect transitions to new states
2 Characterize transitions and place the system back in the initial

state
3 Repeat until the proper low-temperature transition is identified
4 Move to the corresponding state
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TAD: Illustrations
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TAD: Illustrations
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TAD: Illustrations

Danny Perez (LANL) LA-UR-13-29323 67 / 142



TAD: Illustrations

Danny Perez (LANL) LA-UR-13-29323 67 / 142



TAD: Illustrations
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TAD: Illustrations
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TAD: Derivation

Using transitions observed at high temperature, we need to:
Choose one of them as a proper representative of
low-temperature dynamics
Choose a corresponding low-temperature transition time

This is possible under two assumptions:
Harmonic TST holds
All prefactors are higher than νmin
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TAD: Sketch

We are really trying to identify a proper sample of the first transition out
of the current state to occur at Tlow:

Running at a higher temperature Thigh, observe an event with a
barrier ∆E after a time thigh.
Generate corresponding escape time tlow at Tlow

Set tlow,short = min(tlow,short, tlow)

If probability of a yet unseen event with tlow < tlow,short small
enough: accept transition corresponding to tlow,short; else: repeat.

Danny Perez (LANL) LA-UR-13-29323 69 / 142



TAD: Illustrations

For rare events, p(t) = k exp[−kt ]. A sample from one distribution can
be converted into one of another by setting tlowklow = thighkhigh. Using
HTST: tlow = thigh exp[∆E(βlow − βhigh)].

Need to find the barrier for each observed process
High (low) barrier processes extrapolate to long (short) times
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TAD: Illustrations

Los AlamosA.F. Voter, June 2007, LAUR 07-4485

TAD - when can we stop the MD and accept an event?

1/Thigh 1/Tlow

ln
(1

/t
)

T
h
ig

h  tim
e

T
lo

w
 tim

e

Accept
this event

After time tstop, with confidence 1-!, no event can replace
shortest-time event seen at low T.

Move system to this state and start again.

Exact dynamics, assuming harmonic TST, "min, uncertainty !.

ln["min/ln(1/!)]

Stop MD
at this
time (tstop)
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TAD: Derivation

When to stop? Define a stop time thigh,stop such that the probability that
another event would replace the current tlow,short is less than δ.

Assuming that all transition have a prefactor larger than νmin, one get:

thigh,stop =
ln(1/δ)

νmin

(
νmintlow,min

ln(1/δ)

)βhigh/βlow

(6)

After having ran MD at Thigh for a time thigh,stop, you can accept the
event that occured first at Tlow and increment your MD clock by tlow,short
(� thigh,stop).
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TAD: Derivation

You are trying to make sure that there is not a low barrier process
that could have tlow < tlow,short that is still hiding from you.

After running MD at Thigh for a while, you can say with some
confidence that if such a process really existed, you should have
seen it by now.

The worst case is a transition with a low barrier, but a very low
prefactor. This would extrapolate to a time tlow ∼ thigh. That is why
we have to assume a νmin.
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TAD: Illustrations

Los AlamosA.F. Voter, June 2007, LAUR 07-4485

TAD - when can we stop the MD and accept an event?

1/Thigh 1/Tlow

ln
(1

/t
)

T
h
ig

h  tim
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T
lo

w
 tim
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Accept
this event

After time tstop, with confidence 1-!, no event can replace
shortest-time event seen at low T.

Move system to this state and start again.

Exact dynamics, assuming harmonic TST, "min, uncertainty !.

ln["min/ln(1/!)]

Stop MD
at this
time (tstop)
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TAD: Choosing Thigh

The performance of the method depends on Thigh.

Balance of conflicting requirements:
Thigh too low, you spent too much time doing MD before you see a
transition.
Thigh too high, you see transitions that are irrelevant at Tlow. Each
one of these costs you something (e.g., NEB) and you will see
many before you accept the right one.
Thigh too high, anharmonicity errors will become significant.

You might need to guess a bit, but automated adjustment is
possible [Shim, Amar, JCP 134, 054127 (2011)].
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TAD: Illustrations

Figure: Diffusion rate of an Ag adatom on Ag(100).
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TAD in practice

Pros:
Can provide very large boost
Low barriers can be handled to some extent

Cons:
More approximate than the other methods (correlated events,
anharmonicity, minimum prefactor)
Robust and efficient implementation can be a challenge

TAD has been applied to: point defect diffusion, surface growth,
radiation damage annealing, cluster dynamics, etc. See Annual review
of chemical and biomolecular engineering 7, 87 (2016) for examples.
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TAD: generalizations

Learning from the past: decrease stop time for revisits to the same
state. [Montalenti and Voter, JCP 116, 4819 (2002) ]
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TAD: generalizations

Synthetic-TAD: treat fast events with KMC but use TAD to keep looking
for low-rate events. [Sorensen and Voter, JCP 112, 9599 (2000) ]
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TAD: generalizations

ParTAD: spatially parallelize TAD using the SSL algorithm. [Shim et al.,
PRB 76, 205439 (2007) ]
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TAD: generalizations

Figure: SpecTAD: speculative parallelization of TAD [Ann. Rev. of Chem. Bio.
Eng. 7, 87 (2016)] ]
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TAD: generalizations

Figure: SpecTAD: speculative parallelization of TAD [Ann. Rev. of Chem. Bio.
Eng. 7, 87 (2016)] ]
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TAD example: Interstitial clusters in MgO

MgO is a component of nuclear fuel. As such, its tolerance to
radiation is of prime interest.
To first order, radiation causes the formation of Frenkel pairs.
Vacancies are pratically immobile, but interstitials diffuse rapidly
and coalesce into clusters.
The behavior of interstitial clusters is very interesting [Uberuaga et
al., Phys. Rev. Lett., 92, 115505 (2004)]:

Mono-interstitial: diffuse in ns/µs
Di-interstitial: diffuse in s
Tetra-interstitial: immobile

In the tetramer a sink for all larger clusters? no!
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TAD Simulation: Thigh = 2000K, Tlow = 300K

Figure: Red: O; blue: Mg. Perfect bulk atoms are not shown.
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TAD Simulation: Thigh < 2000K, Tlow = 300K

Mobility vs. size pattern is non-trivial
Metastable clusters can be very mobile
Metastable clusters can be very long-lived (years)
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Parallel Replica Dynamics

PARALLEL REPLICA DYNAMICS
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Principle of Parallel-Replica Dynamics (ParRep)

The Problem: the (wall) time between transitions is too long on a single
CPU

The Solution: use many CPUs!

Wait....you said this was not possible!

It is possible if you parallelize over time instead of space [Voter, PRB
57, R13985 (1998)].
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The current scope of MD simulations

Figure: Spatial decomposition scheme: each cell is handled by a different
processor.
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Illustration of ParRep
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Detecting Transistions

Los AlamosA.F. Voter, June 2007, LAUR 07-4485

Detecting a transition

   - best method depends on the system

   - simple method for EAM metal systems:
periodically perform steepest-descent quench;
see if geometry at basin minimum has changed
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Justification of ParRep

Assume you have a true rare event system (i.e., each process’ kinetics
is characterized solely by a rate constant). Then, the (first) escape
times are exponentially distributed, i.e.,

p(t) = ktote−ktot t , (7)

where ktot is the total rate constant for all transitions out of the state
(ktot =

∑
ki ).
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Justification of ParRep

Now imagine creating a super-system composed of M independent
replicas of the system. Then the first escape time distribution of this
new system is (since the total rate constant is just scaled by M):

p∗(t) = Mktote−Mktot t . (8)
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Justification of ParRep

Define the summed time as the sum of the times spent in each replica,
tsum = Mt before the first escape. Then:

p∗(t) = Mktote−Mktot t

p∗(tsum) = Mktote−ktot tsum (1/M)

p∗(tsum) = ktote−ktot tsum

p∗(tsum) = p(t)
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Justification of ParRep

The distribution of first escape times for the original system and for the
composite system (in summed time) are the same!

Since the kinetics on each sub-system are first order, the probability
that the system (both the original and composite) first escapes through
pathway i is simply ki/ktot .

For first-order kinetics, ParRep is exact and accumulates MD time up
to M times faster than standard MD (in wall-clock time).
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Justification of ParRep

In real life, kinetics are never truly first-order. Then, what can we say
about ParRep?

Traditionally, we thought of this as the main approximation underlying
ParRep. We now understand that ParRep does in fact much better.

Even if kinetics are not purely first-order, ParRep can still be made
arbitrarily accurate [Le Bris, Lelievre, Luskin, and Perez, Monte Carlo
Methods and Applications 18, 119 (2012)].
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Justification of ParRep

Let us consider overdamped Langevin dynamics:

dXt = −∇V (Xt ) dt +
√

2β−1dWt

The statistical characteristics of the first escape are given by the
solution of a Fokker-Planck equation with absorbing boundary
conditions around the boundary of state.

This equation statistically accounts for the effect of all possible noise
sequences on the time evolution of the system.
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Justification of ParRep

The probability distribution function of X is given by the solution of:{
∂tv = Lv on A,

v = 0 on ∂A.

with L = −∇V · ∇+ β−1∆.

Formally, the solution of this equation can be obtained by spectral
decomposition of −L:

v(X , t) =
∑

k

exp(−λk t)c0
k uk (X ) (9)

where the λk and uk are eigenvalues and eigenfunctions of −L,
respectively and the c0

k are set by initial conditions.
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Justification of ParRep

At long times (� 1/λ2), v becomes:

v(X , t) ' exp(−λ1t)c0
1u1(X ). (10)

with u1(x) the so-called Quasi-Stationary Distribution (QSD).

If X0 ∼ u1 then, the first exit time TA from A is exponentially distributed
and is a random variable independent of the first hitting point XTA on
∂A.

If you stay long enough in any state, the next escape will be a good
first-order process!
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Justification of ParRep

We can use these concepts to reinterpret ParRep.

Step 1:
Take a trajectory that just entered a state.
Until the initial and final points are in the same state:

Run for a decorrelation time τcorr

Add up the total MD time to the official clock

At the end of that stage, the final point is approximately drawn from u1
of the last visited state, say A.

This is the decorrelation stage
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Justification of ParRep

Step 2:
Generate M − 1 initial points in A
For each point (on different processors):

Run for a decorrelation time τcorr
If the final point in is A, break
Else, resample a point from A and repeat

At the end of that stage, we have M points approximately drawn from
u1 of A.

This is the dephasing stage
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Justification of ParRep

Step 3:
Until the first escape from A, on each replica:

Run MD

Add up the total MD time until the first escape to the official clock
Go to step 1 with the first escape trajectory

This is the parallel stage

Since the trajectories were distributed according to u1, the first
escape of a member of that set is (approximately) a first-order
process.
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Justification of ParRep

The error underlying this procedure is of order exp(−(λ2 − λ1)τcorr),
i.e., ParRep can be made arbitrarily accurate by adjusting τcorr.

This is true independently of the definition of states.

The bigger the spectral gap λ2 − λ1, the better the performance.

[Monte Carlo Methods and Applications 18, 119 (2012)]
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ParRep in Practice

Pros:
Very simple
Arbitrarily accurate
Processors can have unequal or even variable speeds
Efficiently exploits parallel computers
Flexible in terms of the definition of states
Can handle driven systems

Cons:
Requires a parallel computer to get some acceleration
Efficient only if Nτcorr � τtrans

See Comp. Mat. Sci. 100, 90 (2015) for more examples.
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Peta-scale Parallel Replica Dynamics

ParRep provides a unique ability to exploit massively parallel
computers.

In order to demonstrate the scalability of ParRep, we implemented it on
Roadrunner, the first computer to break the petaflop barrier.

1.4 petaflops (1.4× 1015

operations per second)
Simulation rates for 1000 EAM
atoms: 4 ms/day (10 ns/day
for MD on a single core)
Hybrid architecture
12 240 Opteron cores and Cell
processors (about 122 400
cores total)
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Application to Ag Nanowires

Figure: HRTEM imaging of Ag NWs. (Rodrigues et al., PRB 65, 153402)
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Application to Ag Nanowires

Figure: Break-junction conductance measurement of Ag NWs. (Rodrigues et
al., PRB 65, 153402)
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Method

Initial state inferred from HRTEM measurements
EAM potential (Mishin)
Canonical Ensemble (Langevin thermostat),
T=300K
10−6 ≤ v ≤ 1 m/s, 102 ≤ ε̇ ≤ 108s−1

720 < Nrep < 12000, 10 cores/replica
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Stress-strain Behavior

Engineering yield stress ' 1
GPa, Yield stress ' 8 GPa
Early stage behavior is regular
and very robust

Late stage behavior is
complex
Failure occurs for strains
between 15% and >100%
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v = 10−5m/s, ε̇ = 1.5x103s−1
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Early Stage

Plasticity initially mediated by
stacking faults along (111) planes
Transitions more slip-like than
dislocation-like
Formation of a zig-zag pattern
Uniform thinning of the wire
Annihilation does not directly follow
from more strain
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Late Stage

Late stage is sensitive to conditions and
realization. Possible outcomes are:

Necking (all drives, necks earlier for
slow drives)

Non-uniform thinning, transition to
an icosahedral structure, gradual
conversion from FCC to icosahedral.
(intermediate drives)
Annihilation of the stacking fault
network (slow drives)
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Comparison with Experiments

Qualitative comparison with
HRTEM is excellent.

Uniform thinning
Non-uniform thinning (kinks)
Postulated “super-elastic”
state consistent with our
observation of an icosahedral
phase that can “unwind” an
FCC wire
Atomic chain not very stable
for that orientation
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ParRep: generalizations

Figure: ParRep for solid-liquid systems: correctly allows diffusion at wet
surfaces and even dissolution and precipitation [JCP 140 044116 (2014)]
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ParRep: generalizations

Figure: Super-state ParRep: Change the definition of the states to allow
efficient simulations of systems with low barriers [PRL 103, 046101 (2009)]
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Definition of States

In standard ParRep, we exploit the separation of timescale between
τrel and τtrans at the level of single basins.

Figure: This is a good strategy when the landscape looks like this
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Definition of States

Any partition of configuration space can be used. The greater the
separation of timescales between τrel ∼ λ−1

2 and τtrans ∼ λ−1
1 , the

better the performance.

Figure: This is a good definition of states
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Application to Ag on Cu Island Dynamics

Cu (001) substrate
c(10x2) hexagonal Ag island
(between 37 and 271 atoms)
11% lattice mismatch between
Ag and Cu

[Uche, Perez, Voter, Hamilton, PRL 103, 046101 (2009)]
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MD Simulation at 300 K
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Application to Ag on Cu Island Dynamics

Observations:
Large islands are mobile on
MD timescales!
The hopping rate is extremely
sensitive to the island size
There is a “magic size” effect
whereby only islands with
between 127 and 217 atoms
diffuse rapidly
Transitions are extremely
frequent
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Super-States Parallel Replica Dynamics

Slow Coordinates?
The system jumps from basin to basin in <1 ps
Most transitions only affect the core of the island
At 175K , edge vacancies diffuse only every ∼1 ns
Super-state = all basins with the same edge configuration

Using this definition, we simulated the 169-atoms island at 175K and
200K

Total MD-time: 25µs ( 3 years of cpu time)
Used up to 256 cpus
Observed around 30 000 transitions and 10 hops

Danny Perez (LANL) LA-UR-13-29323 123 / 142



Super-State Network

Figure: Observed transitions over 6µs at T = 175K .
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Favorable hopping pathway: vacancy and glide

Figure: Low energy transition pathway inferred from T=175K super-state
Par-Rep simulations.
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Nudged Elastic Band Analysis

Figure: Minimum energy pathway along the previous path.

The barrier to glide is small compared to that of vacancy diffusion
The rate limiting step is the annihilation and creation of vacancies
at the edges
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Size Dependence of the Hopping Rate

Core glide is active at all sizes
The formation energy of
vacancies is large and positive
(negative) at small (large)
sizes
Only in the intermediate
regime is the creation and
annihilation of vacancies
thermally accessible

The size dependence stems from
the sensitivity of the energetics of

edge vacancies.
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ParRep for driven systems

ParRep is not restricted to “static” system, it can also be applied to
driven systems (systems with time-dependent boundary conditions).

In this case one must:

During the parallel stage: increase the driving rate by a factor of
M; enforce synchronization between the replicas.
During the dephasing stage: set the driving rate to 0.
During the decorrelation stage: use the normal driving rate.
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ParRep for driven systems

This recipe works as long as the drive is quasi-static, i.e.,
ki(x , t) = ki(x(t)), i.e., the rates do not depend on the driving rate, just
on the current state of the drive.

In this case, the combined system (with drive ×M) spends the same
amount of time in a given drive interval than the original system.

The probabilities of transitions per unit time are thus preserved and the
dynamics are correct.
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ParRep for Driven Systems

This technique can by applied to study nanoscale friction, as
measured by a Friction Force Microscope (FFM).
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ParRep for Driven Systems
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ParRep for Driven Systems

Figure: Li, Dong, Perez, Martini, Carpick, PRL 106, 12 (2011)
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ParRep for Driven Systems
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Plan

4 Conclusion
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Practical Considerations

How do the different methods compare?
Accuracy: ParRep > Hyper > TAD
Simplicity: ParRep > TAD > Hyper
Flexibility: ParRep > TAD > Hyper
Acceleration: TAD > Hyper > ParRep (might not be true for long)

ParRep is often the best starting point when approaching AMD method
for the first time.
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Practical Considerations

Can (should) I apply AMD method to my system? Yes if:
It is a rare event system (typical transition times > (�) 100 ps)
Transitions can be automatically detected and characterized.
(often means your energy landscape needs to be sufficiently
smooth)
You are typically interested in paths containing more than one
transition.
You are interested in dynamics, not just in sampling.
You can afford to run MD for long enough to see events, detect
transitions, do NEBs, etc.
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Available tools

LAMMPS (http://lammps.sandia.gov/): ParRep, TAD

DL POLY (www.ccp5.ac.uk/): TAD, Hyperdynamics
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Coming soon

EXAALT: a massively parallel AMD/MD/QMD simulation tool.

Open-source: available soon on gitlab.com.
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Current Challenges

The main challenge facing AMD methods is the low barrier problem,
i.e., the acceleration is limited by the fastest processes. This limit our
ability to escape from meta-basins.

Partial solutions:
State-bridging hyperdynamics: bias over low barriers (Miron and
Fichthorn)
Super-state ParRep: lump shallow states together
Synthetic-TAD: use KMC to treat events we know about, use TAD
to discover new events

Recent approaches based on speculation (SpecTAD, ParSplice) are
vey promising ways to address this challenge (see my talk tomorrow).
However, truly general solutions has yet to be developed.
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Conclusion

AMD methods can provide considerable acceleration of systems
where the dynamics is activated, providing insight on the
long-time behavior of materials.
AMD methods (ideally) do not require a priori knowledge about
the important processes.
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Conclusion

QUESTIONS?
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