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 Fundamental scales in a crystalline/ordered system:

Microscopic (“fast” scales): crystalline lattice, atomic resolution
characteristic length scales vs. symmetry

Mesoscopic (“slow” scales): structural amplitudes/envelopes, 
nanopatterns, grains, etc.

In theoretical modeling: Can these two types of scales be separated?

Coupling between different scales:  Need multiple-scale modeling



Theoretical Modeling of Material Structure and Dynamics

 Continuum approach

For example,

• Phase field method

T. Haxhimali et al., Nat. Mater. 5, 660 (2006)

Capture long-wavelength behavior but not crystalline details 
(What is missing in continuum theory: discrete nature of lattice)

• Continuum elasticity theory

C.G. Gamage and Z.-F. Huang, PRE 87, 
022408 (2013)



Theoretical Modeling of Material Structure and Dynamics

 Atomistic simulation

• E.g., Molecular dynamics or Monte-Carlo simulations

• Capture microscopic details of crystalline structure
• Usually computationally challenging for large systems (for both 

spatial and time scales)

• New development of algorithms and techniques (this workshop)

J.J. Hoyt et al., Acta Mater. 47, 3181 (1999): Ni solid-liquid
Ni-Al-W alloy (liquid diffusion)

Woodward et al. JAP 2010



Theoretical Modeling of Material Structure and Dynamics

 Mesoscopic/Microscopic description

• Phase field crystal (PFC) model: incorporates microscopic length 
scale of crystalline structures and diffusive time scales

• Developed from classical density functional theory (CDFT)

• Amplitude equation formalism: 
for “slow”/mesoscopic-scale profile of surfaces/interfaces or defects

• Coupling between different scales

Note: 2 different scales (PFC bcc)

ξ



Why PFC? (advantages and disadvantages)

• CDFT

spatial resolution: dx ~ a/100 ~ 10-2 Å

• PFC (a periodic continuum-field theory)

spatial resolution: dx ~ a/10 ~ 10-1 Å

Dynamics

MD: atomic vibration scale 
PFC: time average (or coarse-graining) scale → diffusive time scale

(orders of magnitude larger than traditional/typical MD scale) 

However, there are lots of challenges (No free lunch!)
(to be discussed later)



Phase Field Crystal (PFC) model: Basic theory

 From classical density functional theory (CDFT) of freezing

(ρ: atomic number density, ρl : reference-state density)

• Expand around an atomic density variation field

 PFC Dynamics (relaxational)
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PFC model equation (general form)



 Original (simplest) PFC model

Expand the correlation function in Fourier space

PFC relaxational dynamics (after rescaling)

ε: reduced temperature; q0=1 after rescaling via lattice spacing; 
݃ ൌ ሺ3/ܤ௫)1/2/2; Bx: proportional to bulk modulus; η: noise
(For more details, see K.R. Elder et al., PRL02, PRE04, PRB07; Huang & Elder, PRL08)

Note: here only 1 microscopic length scale (q0), plus diffusive time scale
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 Some development of PFC-type models:

• Structural PFC (XPFC): (See e.g., the work of McGill/McMaster and UBC groups 
in PRL2010, PRE2011, PRB2013)

The peaks of CDFT 2-point correlation functions (in Fourier space) 
→ Gaussian-type fitting (different from the q-polynomial fitting 

described above in the original PFC model)
→ PFC-type modeling of 2D (hex, square) and 3D (bcc, fcc, 

hcp, simple cubic, diamond (Chan et al. PRE2015)) structures

• Wave-mode PFC: fast dynamics with elastic interaction

• Multi-component PFC (e.g., for binary and ternary alloys)

• Vapor-Liquid-Solid PFC (Schwalbach et al. PRE2013; Kocher/Provatas PRL2015)

• Multi-mode PFC (PRL2013, PRL2016; to be discussed later)

• Angle-dependent PFC (Seymour/Provatas PRB2016, Alster et al. arXiv2017, 
Wang/Liu/Huang 2017)

• Many others ……



Multiple-scale nature of materials:

Multiple length scales: micrometer   nanometer  atomistic
(Athreya, Goldenfeld, Dantzig, Greenwood, and Provatas, PRE 2007)



How to study the meso (“slow”) scales? 

• Standard multiple-scale approach (or singular perturbation):  
for slowly varying complex amplitudes/envelopes 

Separate “fast” (x, y, t) and “slow” scales (X, Y, T)

Beyond the traditional Phase Field models: incorporate elasticity/plasticity

Scale 
separation! 
(adiabatic)

Amplitude Formalism

)( ji
jj eAA 



• Amplitude Equations (with scale separation)

• Similar procedure for alloys: the atomic density and concentration fields

(n: scale separation to Aj and n0; : slow-varying variable)

• Many applications: solidification, islands/quantum dots growth during 
epitaxy, surface segregation, grain boundaries, surface ordering, ……

Amplitude Equation Formalism

Effective free energy (a Lyapunov functional)
rotational invariance (multi-grain orientations; polycrystals)
in small-deformation limit, reduced to continuum elasticity
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• Some advantages of amplitude equation representation

Computational:

Larger spatial scales (mesoscopic)
More numerically “stable” and “controllable”
Adaptive mesh refinement method applicable

Analytical:

Connection to continuum approaches
Phase field model, continuum elasticity theory

Some analytical results available
Perturbation methods



Example: Graphene Moiré patterns on metallic surfaces 

– Application of amplitude PFC: Effect of film-substrate misorientation θ

θ = 0

θ = 5.36º
film-substrate adhesion:
First-principles DFT 

Largest system size: 
up to 19.6 μm ×
33.9 μm (~2.5×1010

equivalent atomic 
sites; for θ = 0.497º 
on Cu(111))

o: Experiment of 
graphene/Pt(111)

(M. Smirman, D. Taha, 
A.K. Singh, Z.-F. Huang, 
K.R. Elder, PRB 2017)

graphene/Cu(111)



Sample topics:

 Control of crystalline symmetries and structure chirality
Challenges: competition among length scales; bonding angle control

 Structure and dynamics of graphene-type 2D materials
Challenges: matching to real materials; out-of-plane 3D deformation

 Coupling between micro and meso scales (surface or interface pinning)
Challenges: Extension to general cases; defect dynamics with Peierls barrier

 Time scales: diffusional dynamics vs. mechanical/elastic relaxation
Challenges: slow vs. fast; lack of instantaneous mechanical equilibrium

 Atomic density localization and vacancy
Challenges: conservation of density vs. maxima (sites); vacancy dynamics

 Hydrodynamic coupling (Challenges: micro vs. hydrodynamic/meso scales)

 Others ……

Some recent advances and ongoing challenges



• What determines the crystal structure of a 
material system?

not just symmetry and space group;

interatomic interaction?

• But why materials with different types of 
interaction can have same structure and 
symmetry?

e.g., solids, soft matter (colloids, 
copolymers), ultracold atoms

• Why a same type of material can have 
different crystal symmetries?

Topic I: Control of crystalline symmetries and structure chirality



• What did standard textbooks say about this? 

• Alexander-McTague analysis of crystallization 
(PRL78; see also Chaikin&Lubensky’s book)

Almost none



• Use the Alexander-McTague analysis of crystallization (PRL78):

The favored crystalline state is determined by the largest contribution of the 
cubic term in free energy expansion of atomic number density n:

 Triads of density waves with closed-loop wave vectors

 Close to melting, bcc is always favored in 3D and triangular in 2D
Sounds not right? Why?

In Alexander-McTague analysis, only 1 mode is considered
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• Three modes are needed to produce all five 2D Bravais lattices
Why?

Triads of density waves with closed-loop wave vectors (resonant condition)

Within each mode: same magnitude of wave vector k
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 Crystalline systems with N competing microscopic length scales

(i) N modes (N peaks in ܥመሺݍሻ);
(ii) Isotropic and rotational invariance

 PFC Dynamics

 Minimum number of modes (length-scales) needed for 
determining complex crystal structures:  N=3 in 2D
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 Example of Triangular-series: 
Qi = 1, 3, 2 (the first 3 shortest reciprocal vectors for triangular)

Complex phase behavior due to competition between different modes 
(different microscopic length scales)
S.K. Mkhonta, K.R. Elder, and Z.-F. Huang, PRL 111, 035501 (2013)



 Dynamics of Phase Transformation 



 Some other examples of 2D phases (different Qi ratios)

(a) square; (b) pentagon-hexagon; (c) rectangular; 
(d) dimer-square; (e) rhombic; (f) oblique



 Defects and phase coexistence

TEM image of graphene
(Robertson et al., Nature Commun. 2012)

(a),(b): defects in 
honeycomb structures; 
(c): grain boundary in 
oblique phase; (d),(e): 
phase coexistence and 
defects; (f): disclination
in dimer phase



What else? Can we control chirality of structure/pattern?

• Chirality: An object or system is chiral if it is distinguishable from its 
mirror image (by translation and rotation; lack of symmetry axes)

• Chiral systems: natural for systems with chiral components (e.g., single-
handed molecules like DNA) and anisotropic interactions

• How about systems composed of achiral building blocks and/or 
governed by isotropic interactions?
e.g., some colloidal or nanocrystal systems 
with achiral shaped particles,
excluded volume effect 
or steric interaction

(K. Zhao & T.G. Mason, 
J. Am. Chem. Soc. 2013) (Qi et al. Nano Lett. 2012)



Pairwise:

Non-
pairwise:

• Use similar approach of multi-mode PFC

Isotropy and rotationally invariant

Resonant conditions

For cubic term:

For quartic term: 
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• Qi (length scale) ratio 
 base lattice symmetry

• Nonlinear coupling 
 resonant density 

wave vectors



• Emergence of 2D chirality from isotropic interactions of 3 
length scales

(a) Misalignment of building blocks from lattice symmetry axes
(both the particle/block and the lattice are achiral; e.g., (a), (b))

(b) Chirality of lattice itself (e.g., (c): oblique)

(c) Chiral superlattices
(the constituent layer/motif is chiral)

S.K. Mkhonta, K.R. Elder, and Z.-F. Huang, 
PRL 116, 205502 (2016)

(Frieze group p211)



• Another example (Qi = 1,  3, 7 of triangular base lattice)

(achiral (p31m); soft)  (chiral (p2); hard)    (chiral; hard)
(weaker cubic coupling)

Compared to colloid experiments and MC simulations

(unit of small clusters; V.N. Manoharan, M.T. 
Elsesser, & D.J. Pine, Science 2003)

(M. Rechtsman, F. 
Stillinger, and S. 
Torquato, PRE 2006)



• Elastic properties

For chiral rectangular

Chiral elastic constants C14 and C24

• >0 (<0) for right- (left-) handed state

• Enantioselectivity and control of homochirality
e.g., a simple shear  shrinking of one enantiomorph but expanding of 
the other  handedness selection (elastically)

• Other applications …

S.K. Mkhonta, K.R. Elder, and Z.-F. Huang, PRL 116, 205502 (2016)
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 Challenges

• How about 3D? Where is the bonding angle control (2D/3D)?
• All the above are essentially for isotropic interactions
• Anisotropic interaction vs. rotational invariance?

Some new development of angle-dependent PFC models:

 Models based on infinite series of C3 expansion

 2D: 
(M. Seymour and N. Provatas, PRB 2016)

 3D/2D: based on spherical harmonics
(E. Alster, D. Montiel, K. Thornton, and P.W. Voorhees, arXiv 2017)

 Model based on finite-order expansion of C3 and C4 

(Z. Wang, Z. Liu, and Z.-F. Huang, to be published)

• All show angle dependence while maintaining rotational invariance of 
free energy functional
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Sample topics:

 Control of crystalline symmetries and structure chirality
Challenges: competition among length scales; bonding angle control

 Topic II: Structure and dynamics of graphene-type 2D materials
Challenges: matching to real materials; out-of-plane 3D deformation

 Coupling between micro and meso scales (surface or interface pinning)
Challenges: Extension to general cases; defect dynamics with Peierls barrier

 Time scales: diffusional dynamics vs. mechanical/elastic relaxation
Challenges: slow vs. fast; lack of instantaneous mechanical equilibrium

 Atomic density localization and vacancy
Challenges: conservation of density vs. maxima (sites); vacancy dynamics

 Hydrodynamic coupling (Challenges: micro vs. hydrodynamic/meso scales)

 Others ……

Some recent advances and ongoing challenges



Topic II: Structure and dynamics of graphene-type 2D materials 

 Characteristics of binary hexagonal 2D materials (e.g., h-BN and TMDs)
(compared to single-component 2D materials like graphene)

Breaking of inversion symmetry
in binary honeycomb lattice

 Topological defects
(grain boundaries and dislocations)

(h-BN 5|7 GB; A.L. Gibb 
et al. JACS 2013)

(Q. Li et al. 
Nano Lett. 
2015)

• 60º inversion domain boundaries
(due to inversion symmetry breaking)

• Effects on electronic properties
• Atomistic methods (e.g., DFT, MD): 

limited length and time scales; 
preconstructed defect cores
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 Binary PFC model with sublattice ordering
(nA, nB: atomic number density variations)

For A/B coupling

For component A

For component B

• αAB: favor A(B) minima on B(A) maxima; 
prevent A/B maxima (atomic sites) overlap

• w, u: allow A/B minima overlap, 
but not necessarily B(A) maxima on A(B) minima;
important for honeycomb stabilization (ring-center vacancy)

• Dynamics:    conserved
non-conserved
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 Grain boundary structures and energies: PFC modeling of h-BN

• At small misorientation angles:
well fitted to the Read-Shockley equation 
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D. Taha, S.K. Mkhonta, K.R. Elder, Z.-F. Huang, PRL 118, 255501 (2017)



 Some advantages of PFC GBs study
– Being able to access large system sizes and diffusive time scales (up to 

0.9 μm × 0.3 μm, with 9.1×106 equivalent atomic sites)
– Without any predetermined setup of defect cores (important for identifying 

complex defect structures)
– Across the full range of GB misorientations (both structures and energies)

Sample results for special angles:
θ = 30º (armchair/zigzag) θ = 60º (inversion domain boundaries)

graphene:
7|5|7 fly-

heads

(MD; by Y. Liu, 
B.I. Yakobson, 

Nano Lett. 
2010)

PFC h-BN:
7|6|8 fly-heads

How reliable are these PFC results of defect core structures?



 Reminder of the PFC model used: 
a long-wavelength theory (short-wavelength behavior?); no real atomic bonds

 Combination with first-principles DFT calculations (ongoing)
(using PFC result as initial configuration; ongoing collaboration with the DFT 
group in Tsinghua Physics (W.H. Duan and Y. Li))

60º IDB of h-BN: 4|8 structure 8|8 structure

PFC
(γ = 0.53 eV/Å)

DFT: tilted 4|8
(γ = 0.43 eV/Å 

band gap 4.25eV)
Consistent with 

previous DFT work 
(Liu, Zou, Yakobson, 

ACS Nano 2012; Li et 
al. Nano Lett 2015)

PFC
DFT: 8|8 → 5|5|8

(avoid unsaturated bonds; 
but form B-B or N-N 

homoelemental bonds)
(5|5|8 observed in DFT result of 

Li et al. ACS Nano 2012)



 Grain growth and collective dynamics of inversion domains

– Control of grain shape: via chemical potential μA vs. μB
(triangle  truncated triangle  hexagon, with zigzag edges)

μA > μB μA = μB μA < μB

– Grain growth dynamics (for 60º inversion domains)



• Collective dynamics
shape transformation of defect core rings mediated via heart-shaped junctions

– Boundary motion: rigid and diffusionless

– Grain area shrinking:  N  t  (2 linear regimes)

 Grain size L ∝ ఈ, with αݐ = 1/2

D. Taha, S.K. Mkhonta, K.R. Elder, and Z.-F. Huang, PRL 118, 255501 (2017)



– Why the growth exponent α = 1/2? (same as classical curvature-driven growth)

– Here: straight or weakly curved grain boundaries (rigid, diffusionless motion)

– Cases of grain growth slowing-down and stagnation? Yes, but still α = 1/2

Then what are the growth mechanisms (for inversion domains)?

– Any grain rotation, translation, or shear-induced deformation? 
No. Different from the Cahn-Taylor mechanism (normal & tangential motions)
60º GB: No lattice sites mismatch (always lattice plane continuity); 
due to inversion symmetry breaking in binary lattice



 Challenges

 3D vs 2D: out-of-plane deformations in 2D materials

– Current PFC modeling of 2D materials: planar monolayer (epitaxy)
– Need new development of PFC models for 2D layered materials

Effectively 3D models (for graphene, h-BN, MoS2, ……)

Allow vertical corrugation/buckling and relaxation of monolayers
GBs and defects: important for small angles

 Matching to real materials

– Model construction of the above binary PFC is based on
• Crystalline symmetry (including lattice length scales)
• A characteristic of binary compounds: the heteroelemental A-B 

neighboring is energetically favored as compared to homoelemental
A-A or B-B ones

– Model parameters: phenomenological and dimensionless



How to match the model to real materials?

– Model parameterization:
• In principle, determine the model parameters by fitting the direct 

correlation functions of classical DFT (e.g., from MD data)
• For 2D materials: availability and consistency of atomistic data?

• Current effort of model parameterization to h-BN:
Length scale: 1 PFC unit = 0.342 Å (from h-BN lattice constant)
Energy scale: 1 PFC unit = 2.74 eV (from h-BN elastic modulus)

• More rigorous parameterization process?

Example: discrepancy in 
atomistic calculations of 

graphene GBs (MD 
(AIREBO vs Tersoff

potential), DFT)
(P. Hirvonen et al. PRB 2016)



Sample topics:

 Control of crystalline symmetries and structure chirality
Challenges: competition among length scales; bonding angle control

 Structure and dynamics of graphene-type 2D materials
Challenges: matching to real materials; out-of-plane 3D deformation

 Topic III: Coupling between micro & meso scales (surface/interface pinning)
Challenges: Extension to general cases; defect dynamics with Peierls barrier

 Time scales: diffusional dynamics vs. mechanical/elastic relaxation
Challenges: slow vs. fast; lack of instantaneous mechanical equilibrium

 Atomic density localization and vacancy
Challenges: conservation of density vs. maxima (sites); vacancy dynamics

 Hydrodynamic coupling (Challenges: micro vs. hydrodynamic/meso scales)

 Others ……

Some recent advances and ongoing challenges



• Standard multiple-scale approach (or singular perturbation):  
for slowly varying complex amplitudes/envelopes 

Separate “fast” (x, y, t) and “slow” scales (X, Y, T)

Scale 
separation! 
(adiabatic)

Reminder: Amplitude equation formalism
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 Amplitude Equations (single-component)
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 >> a0: The Phase-Field limit
 fast/slow scale separation



Nonadiabatic Effects

• Lower temperature → larger ε → sharper surface/interface

→ Scale coupling between slowly varying amplitudes and the 
underlying “fast” periodic crystal structure

→ Nonadiabatic corrections

(Note: Aj (j=1,2,3) and n0 are of “slow” scales (ε1/2x, ε1/2y, εt).
If no scale coupling, the nonadiabatic term = 0.)

“slow”                                     “fast”
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Z.-F. Huang, PRE 87, 
012401 (2013)
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• How about binary alloys?
(n: atomic number density; ψ: alloy concentration field)

where

Cahn‐Hilliard ψ4 free 
energy coupled to 
atomic density n
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component case
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 Nonadiabatic Effects in Alloys

– Meso-micro scale coupling and pinning

– For amplitudes Aj: similar to single-component case

– Additional effect from alloy concentration field

Note: Aj (j=1,2,3), n0 and ψ are of “slow” scales;  fpi = fpi(Aj,n0),  fpi′= fpi′(Aj, ψ)
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 Further coarse-graining → Interface equations of motion

Use local curvilinear coordinate (u, s)

sncurvaturelocal
ntyxn



/ˆ:
/ˆˆ,cosˆsinˆˆ




normal velocity of interface:

(h(x,t): surface height)



Interface supersaturation

(thermodynamic driving 
force, by e.g., external flux)

 Interface equations of motion

• A generalized Gibbs-Thomson relation:

Kinetic 
coefficient

Note: all of μk, γ, p0 and φ are anisotropic!

Surface/interface energy

noise

Lattice pinning: scale coupling effect

vnnk qhpvm   )sin()()"(),( 0
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From the generalized Gibbs-Thomson relation, set ζ0 = 1/μk, λ = -Δ, σ = γ+γ′′

use

A driven sine-Gordon equation

(Hwa-Kardar-Paczuski equation, or Nozieres-Gallet plus KPZ nonlinearity)

(h: interface height)



• Anisotropy of solid‐liquid interfacial energy

– Reversal of γ anisotropy (at large enough α):
Shape change of polar plots (30° rotation)

– Important effect of alloy compositional strain 
and interface stresses

)6cos6cos1( 2
210  

s l



• Effect of alloy compositional strain

Positive vs negative branches of solidus‐
liquidus lines (for α > 0):

ψs(l) < 0: at interface ψ > ψs

 surface enrichment of larger atom A
 compressive interface stress

ψs(l) > 0: at interface ψ < ψs

 surface enrichment of smaller atom B
 tensile interface stress

(note: α > 0 larger A, smaller B;                            ) 

Interface preferential segregation and
compositionally induced interface stresses

Meso-meso coupling between structural 
and concentration profiles

s l

 /)( BA 

compressive

tensile



• Scaling of lattice pinning strength (micro‐meso scale coupling)

Single‐component  Binary alloy

– Anisotropic, hysteresis‐type behavior
– Asymmetric effect of nonzero α

(compositional strain) and interface 
preferential segregation
Z.-F. Huang, PRE 93, 022803 (2016)
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Z.-F. Huang, PRE 87, 012401 (2013)



Application: Liquid/Solid Front Motion

• Continuous growth mode (|F0| > p0, e.g., small ε and high temperature)

Exact solution (1D): 

Front motion by “jumps” of distance a0, exactly one atomic layer spacing!

• Activated/nucleated 
growth mode 
(|F0| < p0, e.g., large ε and low 
temperature)

Exact solution also available

The front is locked/pinned
by the underlying crystalline 
potential

(consistent with crystal growth theory of Cahn (J.W. Cahn, Acta Metall. 1960, 1964))



• Activated/nucleated growth mode
(|F0| < p0, e.g., large ε and low temperature)

Thermal noise/fluctuations important → A stochastic, escape problem
→ An activated, thermal nucleation process (Kramers’ escape rate)

The prefactor

Activation energy

(Note: not exactly Arrhenius, 
due to I0(T) and Ea(T).)

(Z.-F. Huang, PRE 87, 012401 (2013))



 Challenges

 Extension to general scenarios

– Various types of complex interfaces (not limited to the simplified 
configuration studied above)

– Both 2D and 3D (pure, alloying, or sublattice-ordered materials)

 Defect dynamics with Peierls barrier

– Example: grain boundary motion

• p(ε): pinning force, due to fast/slow scale coupling
• At low T (with p > f0), defects will be locked/pinned by

lattice structure (Peierls force); thermally activated motion
• Related to GB roughening

– Relation to grain growth dynamics and stagnation



Summary

Multiple-scale modeling for nonequilibrium complex systems

 Across different scales: Microscopic
Mesoscopic
Continuum/hydrodynamic

 Main feature/motivation: Maintain the efficiency advantage of continuum 
approach through coarse-graining processes, while at the same time 
incorporating significant effects of detailed crystalline structures.

 PFC method: Essentially a continuum field theory; long wavelength, 
coarse-grained; a wide range of applications; advantages & disadvantages

ξ

Challenges
• Micro vs. Meso scales and coupling; 

reliability of short-wavelength behavior
• Matching to real materials
• ......

 Further development of the theory; Combination with atomistic methods
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