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Polarization induced renormalization of local interactions 
in strongly correlated electron systems



Microscopic screening of short-range 
Coulomb interactions (e.g. Hubbard U)

Resonant Inelastic X-ray Scattering (RIXS)  
on Li2CuO2  

→ phonon screening of CT energy
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Atomic U versus solid state U
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but does this hold 
at large distances?



Polarizability versus dielectric screening in 3D

Epol

r Epol

V(r)



Polarizability versus dielectric screening in 3D

Epol

r Epol

V(r)



€ 

αoxygen ≈ 2A
3

Screening of neighbor V on a 2D CuO2 lattice

Cu-O-Cu bond angle 180o 



€ 

αoxygen ≈ 2A
3

Screening of neighbor V on a 2D CuO2 lattice

Cu-O-Cu bond angle 180o 



€ 

αoxygen ≈ 2A
3

Screening of neighbor V on a 2D CuO2 lattice

Cu-O-Cu bond angle 180o 



€ 

αoxygen ≈ 2A
3

polarization partially antiparallel 
nearest neighbor V is antiscreened

Screening of neighbor V on a 2D CuO2 lattice

Cu-O-Cu bond angle 180o 



two polarization fields 
partially perpendicular

nearest neighbor V 
is (partially) unscreened

Screening of neighbor V on 2D cubic lattice

bond angle 90o 



€ 

αarsenic ≈10A
3 angle of 73o :  

nearest neighbor V is overscreened
Sawatzky, Elfimov, JvdB, Zaanen 

EPL 86, 17006 (2009)

Screening of neighbor V on BaFe2 As2 lattice



New types of charge order emerge

JvdB, Meinders, Lorenzana, Eder 
& Sawatzky, PRL 75, 4658 (1995)

Broken 
inversion 
symmetry



Screened interaction in nano systems 

JvdB & Sawatzky , Electronic Properties of Novel Materials 
- Progress in Molecular Nanostructures, 152 (1998)
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JvdB & Sawatzky , Electronic Properties of Novel Materials 
- Progress in Molecular Nanostructures, 152 (1998)
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electronic 
screening

phonon 
screening
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now same with  
Uscreened=U/2



Relation to experiment: RIXS on Li2CuO2
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X-ray scattering: photon in! solid ! photon out

inelastic: ωout < ωin 

resonant: tune ωin to an atomic absorption edge

Energy loss 

Momentum 
transfer: q

3 d 

~900 eV 

2 p 

Cu 

L-edge DIRECT

resolution < 100 meV 
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Direct and  Indirect RIXS
DIRECT

INDIRECT

scattering via absorption-
emission matrix elements

scattering via intermediate 
state core-hole shake-up
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RIXS = |GS〉 → XAS → |INTERMEDIATE〉 → XES → |FS〉

Complicated state with 
strong core-hole potential

RIXS = |GS〉 → .... → |FS〉

Carries low energy, long wavelength, elementary excitations
RIXS can probe universal effective low energy behavior 

Local atomic transition Local atomic transition

Contains chemical detail and atom specific physics

But:
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RIXS 
transition 
operator
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amplitude

Kramers-Heisenberg expression

H.A. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925)

RIXS 
intensity



Oxygen K-edge RIXS on Li2CuO2
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RIXS on Li2CuO2

without phonons 
charge transfer 
energy 4.6 eV

without phonons 
charge transfer 
energy 2.1 eV

phonon contribution 
to “charge transfer” 

energy 2.5 eV

phonon induced anti-screening 
of the CT energy



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems

calculate instead local field induced lattice 
polarizations 



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems

calculate instead local field induced lattice 
polarizations 

one is dealing with large energy scales



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems

calculate instead local field induced lattice 
polarizations 

screens Hubbard U

one is dealing with large energy scales



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems

calculate instead local field induced lattice 
polarizations 

screens Hubbard U

one is dealing with large energy scales

important differences for nano-structures, 
at interfaces, at short distances



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems

depending on lattice nearest neighbor V 
can be either over or under screened

calculate instead local field induced lattice 
polarizations 

screens Hubbard U

one is dealing with large energy scales

important differences for nano-structures, 
at interfaces, at short distances



avoid using dielectric screening for short 
(zero)-range coulomb interactions in 

correlated electron systems

depending on lattice nearest neighbor V 
can be either over or under screened

calculate instead local field induced lattice 
polarizations 

screens Hubbard U

one is dealing with large energy scales

dynamic screening very different for 
electronic and lattice polarizabilities

important differences for nano-structures, 
at interfaces, at short distances





http://www.rug.nl/research/portal/publications/
pub(5b75b5ad-8a1b-4ddb-92f9-f73ba8d52479).html

http://www.rug.nl/research/portal/publications/pub(5b75b5ad-8a1b-4ddb-92f9-f73ba8d52479).html
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