

Effects of polarisability

Ι Liquids, water

1. **Dipole moment of a water molecule:**

$$\vec{\mu} = \sum_{i=1}^{3} q_i \vec{r}_i$$

gas phase = 1.85 Debye liquid phase ~ 2.5 Debye

water molecule is polarised when immersed in water

Polarisation energy of liquid water

$$\sim$$
 10 kJ/mol

potential energy: 42 kJ/mol polarisation energy ~ 25%

$$1 \text{ eV} = 97 \text{ kJ/mol}$$

$$1 \text{ eV} = 97 \text{ kJ/mol}$$
 or $1 \text{ kJ/mol} = 0.01 \text{ eV}$

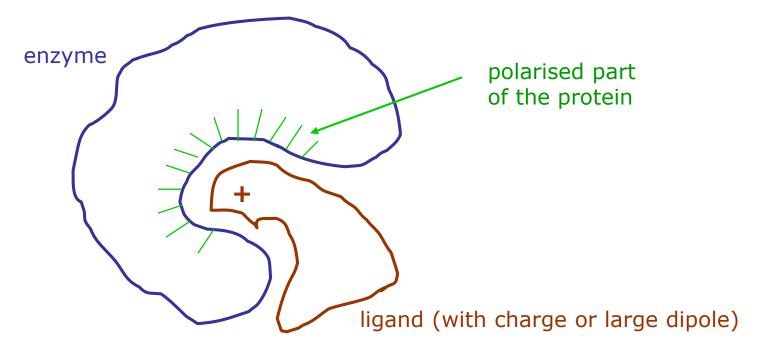
1 kcal/mol = 4.184 kJ/mol or 1 kJ/mol = 0.24 kcal/mol

Effects of polarisability

3. Macroscopic polarisation as function of the frequency ω of the oscillating electric field \vec{E}

```
the dielectric permittivity \varepsilon_r(\omega) is dependent on the frequency \omega of the oscillating field \vec{E}(\omega) liquid water \varepsilon_r(0) = \varepsilon_r(\text{static}) = 78 electronic + orientation \varepsilon_r(\infty) = \varepsilon_r(\text{infinite freq.}) \simeq 2-5 only electronic
```

Consequence: gas phase water models


(e.g. derived using quantum-mechanical models) will not represent liquid water, if explicit polarisation is not included

Effects of polarisability

II Lipids and proteins in membranes

Carbon atoms of lipids can get polarised upon protein insertion

III Proteins, ligand binding

Protein can get polarised upon ligand binding

W.F.van Gunsteren/Vancouver 130416/7

A. Why polarisability? 1. Effects of polarisability 2. Limitations of non-polarisable force fields **B. Six aspects** C. Charge-on-spring (COS) models **D. Representation of entropy**

Limitations of non-polarisable force fields

1. Solvation of polar amino-acid side-chain analogs

One set of atomic charges and van der Waals parameters cannot reproduce both:

heat of vaporisation of the liquid

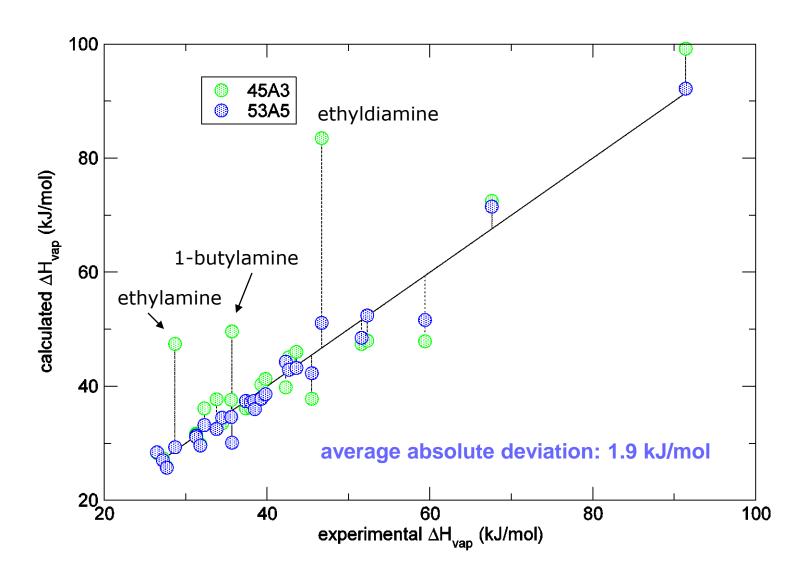
and free energy of solvation in polar solvent: water

GROMOS **53A5** parameters

GROMOS **53A6** parameters

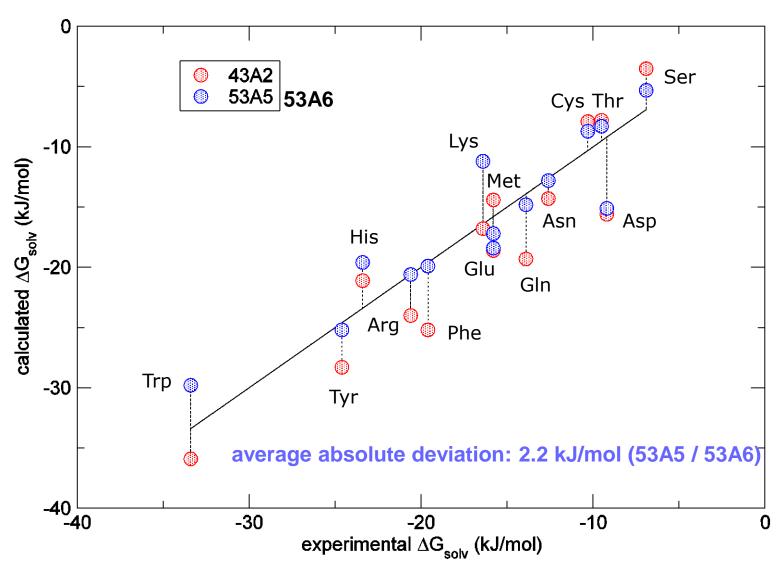
due to the different polarisability of these two environments.

Free energy of solvation in apolar solvent, cyclohexane, is compatible with both using a non-polarisable force field.


2. Solvation of dimethylether (DME)

Polarisable models yield better (free) energies (of solvation)

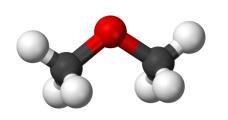
3. Hydrophobic solvation in water – ethylene glycol mixtures


Polarisable models can reproduce the maximum in the free enthalpy of solvation as function of ethylene glycol mole fraction

Heat of vaporization for pure liquids


Free energy of solvation in cyclohexane

amino acid analogues (polar)


Free energy of solvation in water

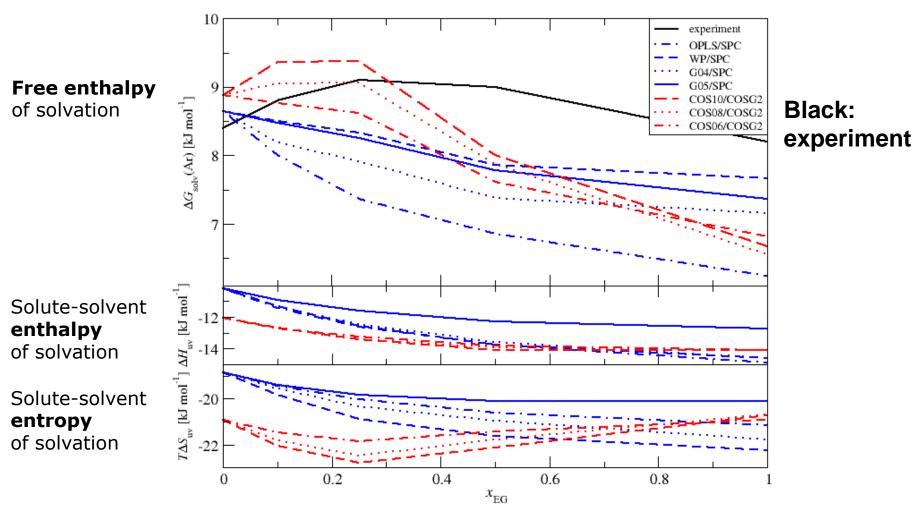
amino acid analogues (polar)

Oostenbrink et al., J Comput. Chem. 25 (2004) 1656-1676

Use of polarisable force fields

A polarisable force field for dimethyl ether, cyclohexane and water

	pure DME	1 DME in cyclohexane	1 DME in water
	$\Delta H_{\text{vap}}[\text{kJ mol}^{-1}]$	ΔG_{solv} [kJ mol ⁻¹]	$\Delta G_{ ext{hydr}}$ [kJ mol ⁻¹]
Experiment	21.7	~ -9.5	~ -7.6
DME _{nonpol} /solv _{nonpol}	21.3	-9.3	-3.2
DME _{pol} /solv _{nonpol}	21.0	-8.3	-9.6
DME _{pol} /solv _{pol}	21.0	-9.9	-7.0


Non-polarisable force field has difficulty reproducing solvation in *non-polar* and *polar* solvent.

Polarisable DME improves the solvation in *water*, but degrades solvation in *cyclohexane*.

Polarisable solvent increases the transferability between different environments further.

Hydrophobic hydration (argon) in water-ethylene-glycol mixtures

Non-polarisable models versus polarisable models

Only polarisable models reproduce the experimental trend

A. Why polarisability? 1. Effects of polarisability 2. Limitations of non-polarisable force fields **B. Six aspects** 1. Definition, distinctions, approximations C. Charge-on-spring (COS) models D. Representation of entropy

Accounting for polarisation in molecular simulation

Polarisation

Change the *multipole moments* $\mu^{(n)}$ of a charge distribution due to an (applied) *electric field* \vec{E}

```
monopole: charge q dipole: dipole \vec{\mu} of charge distribution octupole: ...
```

Potential and field of a charge distribution

Coulomb potential

$$\varphi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}'$$

Series expansion of the integrand

$$\frac{1}{|\vec{r} - \vec{r}'|} = \left[(x - x')^2 + (y - y')^2 + (z - z')^2 \right]^{-\frac{1}{2}}$$

$$= \left[x^2 + y^2 + z^2 - 2(xx' + yy' + zz') + x'^2 + y'^2 + z'^2 \right]^{-\frac{1}{2}}$$

$$= \left[r^2 - 2\vec{r} \cdot \vec{r}' + r'^2 \right]^{-\frac{1}{2}}$$

$$= \frac{1}{r} \left[1 - \frac{2\vec{r} \cdot \vec{r}'}{r^2} + \left(\frac{r'}{r} \right)^2 \right]^{-\frac{1}{2}}$$

$$= \text{assume } |\vec{r}'| \ll |\vec{r}| \text{ and use } \left[1 + x \right]^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots$$

$$\rho(\vec{r}') = \text{charge density}$$

Potential and field of a charge distribution

Series expansion of the integrand

$$\frac{1}{|\vec{r} - \vec{r}'|} = \frac{1}{r} \left[1 + \frac{\vec{r} \cdot \vec{r}'}{r^2} - \frac{1}{2} \left(\frac{r'}{r} \right)^2 + \frac{3}{2} \frac{(\vec{r} \cdot \vec{r}')^2}{r^4} - \frac{3}{2} \frac{(\vec{r} \cdot \vec{r}') \vec{r}'^2}{r^4} + \frac{3}{8} \left(\frac{r'}{r} \right)^4 \dots \right]$$

$$I \quad II \qquad IV$$

$$1 \quad \frac{r'}{r} \qquad \left(\frac{r'}{r} \right)^2 \qquad \left(\frac{r'}{r} \right)^3$$

$$\varphi^{I}(\vec{r}) = \frac{1}{4\pi\varepsilon_{0}} \frac{1}{r} \int \rho(\vec{r}') d\vec{r}' = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r}$$
 $q = \text{charge}$

$$\varphi^{II}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3} \cdot \int \vec{r}' \rho(\vec{r}') d\vec{r}' = \frac{1}{4\pi\varepsilon_0} \frac{\vec{\mu} \cdot \vec{r}}{r^3} \qquad \mu = \text{dipolement}$$

$$\varphi^{III}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \int \frac{1}{2} \left[3\cos^2\theta - 1 \right] r'^2 \rho(\vec{r}') d\vec{r}'$$

$$= \frac{1}{4\pi\varepsilon_0} \frac{Q(\theta)}{r^3} \qquad Q = \text{quadrupolemoment}$$

Potential and field of a charge distribution

Electric field

differentiate φ with respect to \vec{r} , take minus sign:

Term I:
$$E^{I}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \frac{\vec{r}}{r} = \frac{q\vec{r}}{4\pi\varepsilon_0 r^3}$$

Term II:
$$E^{II}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left[-\frac{\vec{\mu}}{r^3} + \frac{3\vec{r}(\vec{\mu} \cdot \vec{r})}{r^5} \right] = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} \left[\frac{3\vec{r}\vec{r}}{r^2} - 1 \right] \cdot \vec{\mu}$$

dipole tensor \vec{T}

Macroscopic description of polarisation

Continuum with relative dielectric permittivity ε_r or susceptibility χ

- dielectric displacement:
$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$

- polarisation:
$$\vec{P} = (\varepsilon_r - 1)\varepsilon_0\vec{E} = \chi\vec{E}$$

- Coulomb energy:
$$U\left(r_{i}, r_{j}\right) = \frac{1}{4\pi\varepsilon_{0}\varepsilon_{r}} \frac{q_{i}q_{j}}{\left|r_{i} - r_{j}\right|}$$

Accounting for polarisation in molecular simulation

Distinguish:

- 1. **Dipole** moment versus other **multipole** moments
 - monopole generally does not change (charge conservation)
 - dipole term then dominates expansion
- 2. Homogeneous versus inhomogenous fields

$$\vec{E} = \vec{E}(\vec{r})$$
 \vec{E} varies with \vec{r}

3. Linear versus non-linear dependence of induced moment on field $oldsymbol{E}$

$$\vec{\mu} = \vec{\alpha}\vec{E}$$
 $\vec{\mu} = \vec{f}(\vec{E})$

Accounting for polarisation in molecular simulation

Distinguish:

4. Isotropic versus anisotropic polarisation

$$\vec{\mu} = \alpha \vec{E}$$

$$\vec{E}$$

$$\vec{\mu} = \vec{\alpha} \vec{E}$$

$$\vec{\alpha} \text{ is a tensor}$$

$$\vec{\mu} \text{ in direction of field } \vec{E}$$

5. Permanent dipoles versus induced dipoles gas phase due to surroundings in the condensed phase

Various approximations used

1. linear dipole polarisation in a non-homogeneous electric field

$$\vec{\mu}(\vec{E}) = \vec{\alpha}\vec{E} + \frac{1}{3}\vec{\alpha}'\vec{\nabla}\vec{E} + \frac{1}{15}\vec{\alpha}''\vec{\nabla}\vec{\nabla}\vec{E} + \dots$$
non-uniform part, neglected in homogeneous field approximation

linear dipole polarisation in a homogeneous electric field

$$\vec{\mu}(\vec{E}) = \vec{\alpha}\vec{E}$$

3. non-linear dipole polarisation in a homogeneous electric field

$$\vec{\mu}(\vec{E}) = (\vec{\alpha} + \vec{\beta}\vec{E} + \frac{1}{2}\vec{\gamma}\vec{E}\vec{E} + ...) \vec{E}$$
non-linear part,
neglected in linear
response approximation

Various approximations used

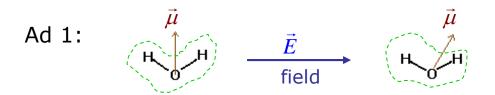
isotropic linear dipole polarisation in a homogeneous field

$$\begin{pmatrix} \mu_{x} \\ \mu_{y} \\ \mu_{z} \end{pmatrix} = \begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix} \begin{pmatrix} E_{x} \\ E_{y} \\ E_{z} \end{pmatrix}$$
tensor character, neglected in isotropic polarization approximation
$$\begin{pmatrix} \mu_{x} \\ \mu_{y} \\ E_{z} \end{pmatrix}$$
scalar

no (explicit) induced dipoles

$$\vec{\mu}^{\text{permanent}} \neq \vec{0}$$
 $\vec{\mu}^{\text{induced}} \left(\vec{E} \right) = \vec{0}$
may include mean polarisation

neglect of induced polarisation


$$\vec{\mu}^{\text{induced}} \left(\vec{E} \right) = \vec{0}$$

A. Why polarisability? 1. Effects of polarisability 2. Limitations of non-polarisable force fields **B. Six aspects** 1. Definition, distinctions, approximations 2. Mechanisms C. Charge-on-spring (COS) models D. Representation of entropy

Molecular mechanisms of polarisation

- 1. Electronic:
- 2. Geometric:
- 3. Orientational:

redistribution of electrons over atoms/molecules
change of geometry of a molecule
realignment of molecule

electron density shifts to left due to \vec{E}

Ad 2:
$$\stackrel{\mu}{\stackrel{\Theta}{\mapsto}}$$
 H $\stackrel{\vec{E}}{\stackrel{\text{field}}{\mapsto}}$ bond angle Θ narrows due to \vec{E}

Ad 3:
$$\vec{\mu}$$
 H \vec{E} molecular orientation changes due to \vec{E}

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments

C. Charge-on-spring (COS) models

D. Representation of entropy

Modelling of polarisability in molecular simulation

1. Mean-field models:

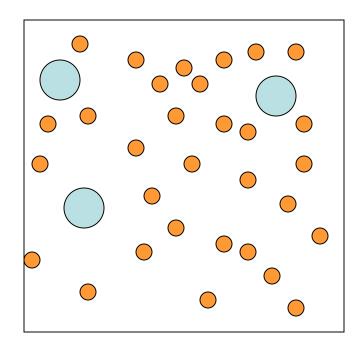
implicit polarisation

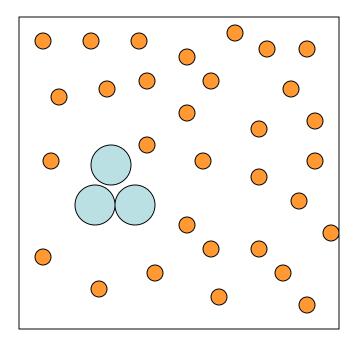
permanent dipole moment of a molecule is **enhanced** from gas phase value to the condensed phase value

for example:

$$\mu_{gas} = 1.85$$
 Debye

$$\mu_{SPC} = 2.27$$
 Debye

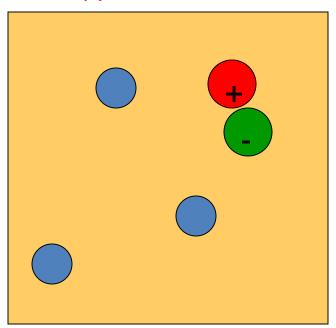

SPC (simple point charge) model for *liquid* water


good model for homogeneous environment, but not for *in*homogeneous surroundings

→ H₂O bound to protein or ion or in a membrane

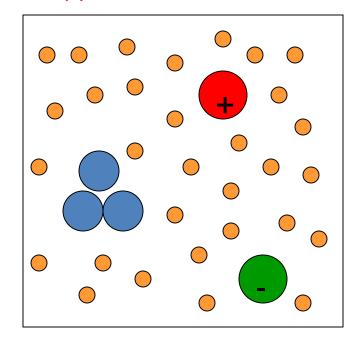
The hydrophobic effect

What keeps proteins folded?
Why does oil separate from water?
Why do people who do not know anyone at parties, end up together?


Particles (**blue ones**) are driven together by favourable interactions **within** the environment (**yellow ones**)

This interaction driving the blue particles together cannot be coarse-grained

Modelling or simulating the hydrophobic effect


Implicit solvent:

- no aggregation of "hydrophobic" solutes
- too strong electrostatic interaction:
 aggregation of unlike charges
- no entropy of solvent

Explicit solvent:

- aggregation of "hydrophobic" solutes
- damped electrostatic interaction: solvation of charges
- entropy of solvent

It is *NOT* true that hydrophobic particles do not "like" water, rather the interaction of water with water is stronger.

Ions with unlike charges "like" water more than themselves.

Implicit solvation models are missing some fundamental biomolecular interactions, which are automatically included in explicit solvent simulations

Modelling of polarisability in molecular simulation

2. Explicit, classical polarisation in the molecular model

Introduction of *inducible dipoles* in molecules

- more expensive
- not easy to parameterise

3. Quantum-mechanical treatment of electronic degrees of freedom

The electron density can be polarised

not efficient for condensed phase systems
 e.g. ionic solutions

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations

C. Charge-on-spring (COS) models

D. Representation of entropy

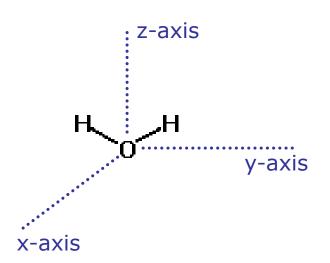
How to introduce classical, explicit polarisability into molecular models for simulation

- A. Generating induced dipoles: 3 methods
- 1. induced *point* dipoles $\vec{\mu}_i$ at sites \vec{r}_i $\vec{\mu}_i = \alpha_i \vec{E}(\vec{r}_i)$
- 2. changing the size of the (atomic) charges

$$q_j$$
 at \vec{r}_j such that $\vec{\mu}_i = \sum_i \Delta q_j \vec{r}_j = \alpha_i \vec{E}(\vec{r}_i)$

so-called **fluctuation-charge models**

3. changing the geometry of the charge distribution, e.g. by changing the position of virtual charge q_i^v such that


$$\vec{\mu}_i = \sum_i q_j^{\nu} \vec{r}_j^{\nu} = \alpha_i \vec{E}(\vec{r}_i)$$

for example: charge-on-spring model (COS)

How to introduce classical, explicit polarisability into molecular models for simulation

Choice of isotropic or anisotropic polarisation

$$\begin{pmatrix} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \\ \boldsymbol{\mu}_{z} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_{xx} & \boldsymbol{\alpha}_{xy} & \boldsymbol{\alpha}_{xz} \\ \boldsymbol{\alpha}_{yx} & \boldsymbol{\alpha}_{yy} & \boldsymbol{\alpha}_{yz} \\ \boldsymbol{\alpha}_{zx} & \boldsymbol{\alpha}_{zy} & \boldsymbol{\alpha}_{zz} \end{pmatrix} \begin{pmatrix} \boldsymbol{E}_{x} \\ \boldsymbol{E}_{y} \\ \boldsymbol{E}_{z} \end{pmatrix}$$

Water

off-diagonal elements experimentally not known

> bulk of polarisation effect is captured using isotropic polarisation

How to introduce classical, explicit polarisability into molecular models for simulation

C. Choosing the sites of the induced dipoles

- on atoms of model
- on other sites:
 - on bonds (bond polarisability)
 - on virtual atoms

this may introduce torques

D. Avoid the polarisation catastrophe

If two **inducible dipoles** come spatially **too close to each other**, the dipolar interaction between them mutually **enhances their** *induced* **dipoles to infinity**

for example: water
$$r_{\text{OO}} \ge \left[4\alpha^2/(4\pi\varepsilon_0)^2\right]^{\frac{1}{6}} \approx 0.144 \text{ nm}$$

Remedies:

- damp polarisability at short distances
- use non-linear polarisation, e.g. $\mu = \alpha \ln(E+1)$ sublinear
- use smaller, more distributed polarisabilities

Considerations regarding choice of model to represent induced dipoles

Accuracy versus simplicity

- 1. no induced multipoles beyond dipoles forces are already 3-rd rank tensors using point dipoles
- 2. monopoles (charges) are most easy to handle in schemes to compute long-range electrostatic forces

particle-mesh schemes, virial so: fluctuation-charge or charge-on-spring models

- 3. rather no rigid virtual sites no anisotropy may result in torques
- 4. fluctuation charge models

 scaling the charges of a charge distribution
 does change all multipoles in a fixed ratio
- 5. charge-on-spring models

if $q_j^{\ \nu}$ is large, separation $\vec{r}_j^{\ \nu}$ is small dipole approximation is good, so, other multipoles don't change

The charge-on-spring models are the simplest realisations of polarisation

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

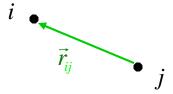
- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)

C. Charge-on-spring (COS) models

D. Representation of entropy

Induced point dipoles: expression for the energy

Induced dipoles:


at sites of i=1,2 ... N atoms with permanent charges q_i

$$\vec{\mu}_i = \alpha_i \vec{E}_i = \alpha_i \left\{ \vec{E}_i^q + \sum_{\substack{j=1 \ j \neq i}}^N \vec{T}_{ij} \vec{\mu}_j \right\}$$

$$\underline{M} = \underline{A} \Big[\underline{E}^q + \underline{T}\underline{M} \Big]$$

Electrostatic field from permanent charges:

$$\vec{E}_i^q = \sum_{\substack{j=1\\j\neq i}}^N \frac{1}{4\pi\varepsilon_0} \frac{q_i \vec{r}_{ij}}{r_{ij}^3}$$

Dipole tensor:

$$\vec{T}_{ij} = \frac{1}{4\pi\varepsilon_0} \frac{1}{r_{ij}^3} \left[\frac{3\vec{r}_{ij}\vec{r}_{ij}}{r_{ij}^2} - 1 \right]$$

Induced point dipoles: expression for the energy

Electrostatic energy:

$$U_{el} = U_{qq} + U_{ind} = U_{qq} + U_{stat} + U_{\mu\mu} + U_{self}$$

$$U_{qq} = \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \frac{1}{4\pi \varepsilon_0} \frac{q_i q_j}{r_{ij}}$$

$$U_{stat} = -\sum_{i=1}^{N} \vec{\mu}_{i} \cdot \vec{E}_{i}^{q}$$

$$U_{\mu\mu} = -\frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq i}}^{N} \vec{\mu}_{i} \vec{T}_{ij} \vec{\mu}_{j}$$

$$U_{self} = \sum_{i=1}^{N} \int_{0}^{\vec{\mu}i} \vec{E}_{i} \cdot d\vec{\mu}_{i} = \sum_{i=1}^{N} \int_{0}^{\vec{\mu}i} \frac{\vec{\mu}_{i}}{\alpha_{i}} d\vec{\mu}_{i} = \sum_{i=1}^{N} \frac{\vec{\mu}_{i}^{2}}{2\alpha_{i}}$$

Induced point dipoles: expression for the forces

At equilibrium:

$$\frac{\partial U_{el}}{\partial \vec{\mu}_{i}} = 0 \text{ or } \vec{\mu}_{i} = \alpha_{i} \vec{E}_{i}$$

Force is the negative gradient of U_{el} :

$$\vec{f}_{k} = -\frac{\partial U_{el}}{\partial \vec{r}_{k}} - \sum_{i=1}^{N} \frac{\partial U_{el}}{\partial \vec{\mu}_{i}} \cdot \frac{\partial \vec{\mu}_{i}}{\partial \vec{r}_{k}} \qquad \frac{\partial U_{el}}{\partial \vec{\mu}_{i}} = 0$$

$$= -\frac{\partial}{\partial \vec{r}_{k}} \left[\underbrace{U_{qq} + U_{stat} + U_{\mu\mu}}_{only \text{ these contribute}} + U_{self} \right]$$
only these contribute

Induced point dipoles: expression for the forces

Force is the negative gradient of U_{el} :

$$\begin{split} \vec{f}_{k} &= q_{k} \vec{E}_{k}^{q} + \sum_{i=1}^{N} \vec{\mu}_{i} \cdot \frac{\partial \vec{E}_{i}^{q}}{\partial \vec{r}_{k}} + \sum_{i=1}^{N} \frac{\partial}{\partial \vec{r}_{k}} \left(\vec{\mu}_{i} \vec{T}_{ik} \vec{\mu}_{k} \right) \\ &= q_{k} \vec{E}_{k}^{q} + \sum_{i=1}^{N} \vec{\mu}_{i} \cdot \frac{\partial}{\partial \vec{r}_{k}} \left(\sum_{\substack{j=1\\ i \neq k}}^{N} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{j} \vec{r}_{ij}}{r_{ij}^{3}} \right) \end{split}$$

$$+\sum_{i=1}^{N} \frac{1}{4\pi\varepsilon_{0}} \frac{3}{r_{ik}^{5}} \left\{ \frac{5}{r_{ik}^{2}} \left(\vec{\mu}_{i} \cdot \vec{r}_{ik} \right) \left(\vec{\mu}_{k} \cdot \vec{r}_{ik} \right) \vec{r}_{ik} - \left(\vec{\mu}_{i} \cdot \vec{\mu}_{k} \right) \vec{r}_{ik} - \left(\vec{\mu}_{i} \cdot \vec{r}_{ik} \right) \vec{\mu}_{k} - \left(\vec{\mu}_{k} \cdot \vec{r}_{ik} \right) \vec{\mu}_{i} \right\}$$

if the induced dipoles $\vec{\mu}_i$ are known, force \vec{f}_k is known

Inclusion of polarisability in molecular models

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations
- C. Charge-on-spring (COS) models

D. Representation of entropy

Equation for the induced dipoles or field equation

Induced dipoles:
$$\vec{\mu}_i = \alpha_i \vec{E}_i = \alpha_i \left\{ \vec{E}_i^q + \sum_{\substack{j=1 \ j \neq i}}^N \vec{T}_{ij} \vec{\mu}_j \right\}$$

Induced dipoles equation:
$$\vec{\mu}_i = \alpha_i \left\{ \vec{E}_i^q + \sum_{\substack{j=1 \ j \neq i}}^N \vec{T}_{ij} \vec{\mu}_j \right\}$$

Field equation:
$$\vec{E}_i = \left\{ \vec{E}_i^q + \sum_{\substack{j=1 \ j \neq i}}^N \alpha_i \vec{T}_{ij} \vec{E}_j \right\}$$

Equation for the induced dipoles or field equation

Using matrix notation:

$$\underline{\underline{M}} = \begin{pmatrix} \overline{\mu}_1 \\ \overline{\mu}_N \end{pmatrix} \qquad \underline{\underline{A}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{pmatrix} \qquad \underline{\underline{T}} = \text{dipole tensor}$$

$$\underline{T}_{ij} = \frac{1}{4\pi\varepsilon_0} \frac{1}{r_{ij}^3} \left\{ \frac{3}{r_{ij}^2} \begin{pmatrix} x_{ij} x_{ij} & x_{ij} y_{ij} & x_{ij} z_{ij} \\ y_{ij} x_{ij} & y_{ij} y_{ij} & y_{ij} z_{ij} \\ z_{ij} x_{ij} & z_{ij} y_{ij} & z_{ij} z_{ij} \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

Induced dipole equation:

$$\underline{M} = \underline{A}\underline{E} = \underline{A} \left[\underline{E}^q + \underline{T}\underline{M} \right]$$

$$\left[\underline{A}^{-1} - \underline{T}\right]\underline{M} = \underline{E}^q$$
 so $\underline{M} = \left[\underline{A}^{-1} - \underline{T}\right]^{-1}\underline{E}^q$

Methods to solve the field equations or to find the induced dipoles

Four methods

- 1. matrix inversion: invert $\left[\underline{A}^{-1} \underline{T}\right]$ $3N \times 3N \text{ matrix } \rightarrow \text{ effort proportional to } N^3 \text{ expensive}$
- 2. iterative solution:

$$\underline{\underline{M}}^{(n)} = \underline{\underline{A}} \left[\underline{\underline{E}}^q + \underline{\underline{T}}\underline{\underline{M}}^{(n-1)} \right] \qquad n = 1, 2, \dots$$

3. use a prediction from previous MD steps (plus iteration)

$$\vec{\mu}_{i}(t) = 2\vec{\mu}_{i}(t - \Delta t) - \vec{\mu}_{i}(t - 2\Delta t)$$

efficient method (combined with iteration)

Methods to solve field equations or to find the induced dipoles

Four methods

4. Treat $\vec{\mu}_i$ as additional dynamical variables

extended system technique:

Lagrangian such that $\langle \vec{\mu}_i \rangle = \alpha_i \langle \vec{E}_i \rangle$

$$L = \frac{1}{2} \sum_{i=1}^{N} m \, \dot{\vec{r}_{i}}^{2} + \frac{1}{2} \sum_{i=1}^{N} M_{i}^{\mu} \dot{\vec{\mu}_{i}}^{2} - \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq 1}}^{N} \frac{1}{4\pi \varepsilon_{0}} \frac{q_{i} q_{j}}{r_{ij}}$$

$$-\sum_{i=1}^{N} \vec{\mu}_i \cdot \vec{E}_i + \sum_{i=1}^{N} \frac{\vec{\mu}_i^2}{2\alpha_i}$$

Small time step required, fluctuations induce dispersion forces

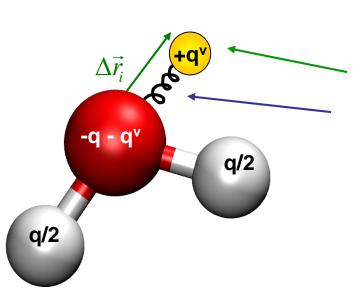
Inclusion of polarisability in molecular models

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations


C. Charge-on-spring (COS) models

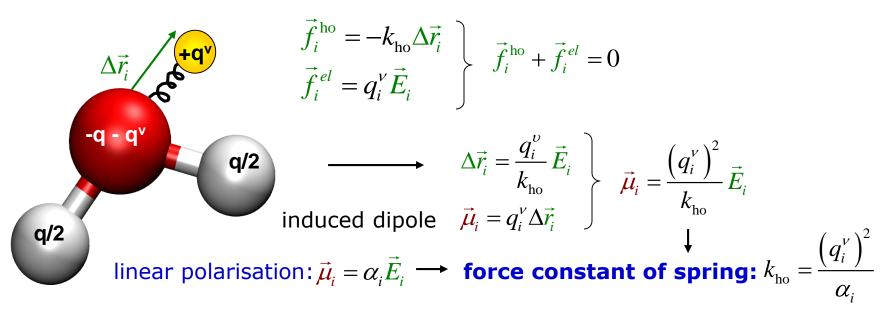
1. Equations, parameters, non-linear polarisation

D. Representation of entropy

The Charge-On-Spring (COS) model

The **simplest realisation of polarisation** is the **displacement** of a **charge** q^{v} at a **virtual (massless) site** which is **restrained by** a harmonic potential (a **spring**) to one of the real (atomic) sites or to a virtual site. Of course there is no intra-molecular Coulomb interaction.

$$\vec{\mu}_i = q_i^{\nu} \Delta \vec{r}_i \qquad \Delta \vec{r}_i = \vec{r}_i^{\nu} - \vec{r}_0$$


virtual site spring force constant $\frac{\left(q_i^v\right)^2}{\alpha_i}$

atom polarisability

energy:
$$U\left(\Delta \vec{r}_i\right) = \frac{1}{2} k_i^{ho} \left(\Delta \vec{r}_i\right)^2$$

The Charge-On-Spring Model

The **virtual particle** i with charge q^v must at any time be positioned such that the **total force acting on it is zero**

Parameters of the model:

- 1. **site** i of charge on spring
- 2. q_i^v if chosen large (-8e) then $\Delta \vec{r}_i$ small
- 3. α_i polarisability

Problems with polarisable force fields

Including polarisation in a force field can lead to overpolarisation with effects such as polarisation catastrophy and too large dielectric permittivity

Some remedies:

A large enough repulsive van der Waals term all COS models

B reduced polarisability COS/B2, COS/G2

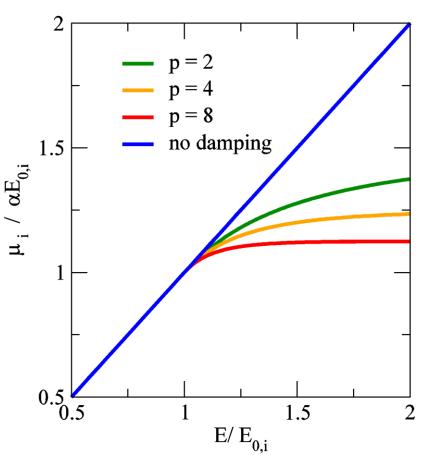
C virtual COS site COS/G2, COS/D2

D sublinear dependence on electric field COS/D2

E several COS sites expensive

F screening for short distances ad hoc

Yu et al., J. Chem. Phys 118 (**2003**) 221-234 Yu & van Gunsteren, J. Chem. Phys 121 (**2004**) 9549-9564 Kunz & van Gunsteren, J. Phys. Chem. A113 (**2009**) 11570-11579 Bachmann & van Gunsteren, Mol. Phys. 112 (**2014**) 2761-2780 Bachmann & van Gunsteren, J. Chem. Phys. 141 (**2014**) 22D515


Damped non-linear polarisability

Induced dipole linear up to a certain value of the electric field then levelling off (saturation).

Continuous and continuous in

the **first derivative**:
$$\vec{\mu}_{i} = \begin{cases} \alpha_{i}\vec{E}_{i} & |\vec{E}_{i}| < E_{0,i} \\ \frac{\vec{\mu}_{i}}{p} & |\vec{E}_{i}| | \geq E_{0,i} \end{cases}$$

$$\vec{\mu}_{i} = \begin{cases} \alpha_{i}E_{0,i} & |\vec{E}_{i}| < E_{0,i} \\ \frac{\vec{E}_{i}}{p} & |\vec{E}_{i}| \geq E_{0,i} \end{cases}$$

Accounts for hyperpolarisability in a simplified way.

Inclusion of polarisability in molecular models

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

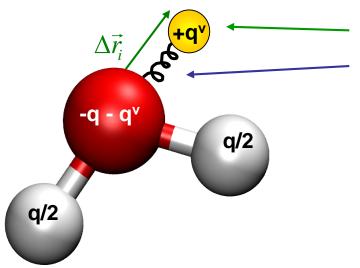
- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents

D. Representation of entropy

An example of a *sub-atomic* water model: The COS/D2 polarisable model


Four-site (FG) model

The simplest realisation of polarisation is the displacement of a **charge** q^{v} at a **virtual (massless) site** which is **restrained by** a harmonic potential (a spring) to one of the real (atomic) sites or to a virtual site.

Inducible electric dipole $\vec{\mu}_i = q_i^{\nu} \Delta \vec{r}_i$ $\Delta \vec{r}_i = \vec{r}_i^{\nu} - \vec{r}_0$

$$\vec{\mu}_i = q_i^{\nu} \Delta \vec{r}_i$$

$$\Delta \vec{r}_i = \vec{r}_i^{\ \nu} - \vec{r}_{\rm O}$$

virtual site

spring force constant
$$\frac{\left(q_i^v\right)^2}{\alpha}$$

atom polarisability

energy:
$$U(\Delta \vec{r}_i) = \frac{1}{2} k_i^{ho} (\Delta \vec{r}_i)^2$$

Force-field parameters: water

non-polarisable polarisable

	Exp.	SPC	COS/G2	COS/D2
C ₆ (O-O) (10 ⁻³ kJmol ⁻¹ nm ⁶⁾		2.617	3.244	3.2444
C ₁₂ (O-O) (10 ⁻⁶ kJmol ⁻¹ nm ¹²⁾		2.634	3.458	3.252
C ₁₂ (H-H) (10 ⁻⁶ kJmol ⁻¹ nm ¹²⁾				3.0
μ ₀ (D)	1.855	2.270	1.850	1.855
α $(4\pi ε_0 10^{-3} \text{ nm}^3)$	1.494		1.255	1.3

 μ_0 α α increased reduced reduced

Geometry: d_{OH}: 0.09572 nm < HOH: 104.52°

• Virtual site M: d_{OM} : 0.02472 nm (COS/G2: 0.022 nm)

Charge on spring: -8e

• Damping: p:8 $E_0: 140 \text{ (kJmol}^{-1} \text{nm}^{-3})^{1/2}$

Results: thermodynamic quantities, water

non-polarisable polarisable

			Exp	SPC	COS/G2	СО	S/D2
ρ	(kgm ⁻³)	density	997	973	999		999
ΔH_{vap}	(kJmol ⁻¹)	heat of vaporisation	44.1	43.9	43.7		44.1
ΔF_{exc}	(kJmol ⁻¹)	excess free energy	24.0	23.6	21.8		24.3
Y	(mNm ⁻¹)	surface tension	71.6	48.4	59.0		63.6
C_p	(Jmol ⁻¹ K ⁻¹)	heat capacity	75.3	93.0	107.7		88.9
α_p	(10 ⁻⁴ K ⁻¹)	thermal expansion	4.22	9.0	7.0		4.9
κ_{T}	(10 ⁻⁶ atm ⁻¹)	compressibility	45.8	47.8	47.8		44.4

ho too small ho too small ho too small ho too small ho too large ho too large ho too large ho too large ho too large

Results: dynamic quantities, water

non-polarisable polarisable

		Exp	SPC	COS/G2	COS/D2
D	(10 ⁻⁹ m ² s ⁻¹) diffusion constant	2.3	4.2	2.0	2.2
T ₂ OH	(ps) rotational correlation time	1.95	1.9	3.9	3.8

D too large τ_2^{OH} too large τ_2^{OH} too large

Results: electric quantities, water

non-polarisable polarisable

		Exp.	SPC	COS/G2	COS/D2
ε (0)	dielectric permittivity	78.4	64.7	87.8	78.9
< <i>µ</i> > (D)	total molecular dipole	2.3 - 2.5	2.27	2.61	2.55
<µ ^{ind} > (D) induced molecular dipole	-	_	0.80	0.73
τ_{D} (ps)	Debye relaxation time	8.3	6.9	15.8	8.4

 $\varepsilon(0)$ too small $\varepsilon(0)$ too large τ_D too small τ_D too large

Properties of non-polarisable and polarisable liquid chloroform *CHCl*₃

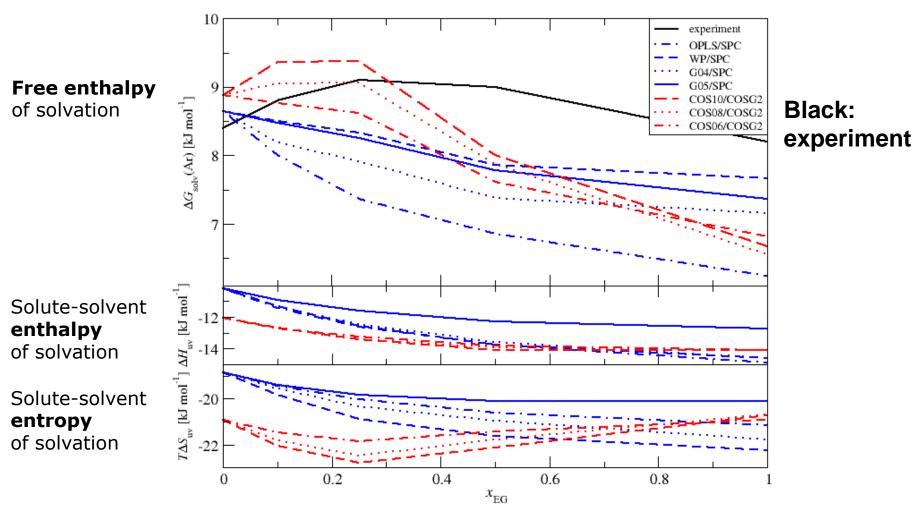
Properties	Experiment	Non-polarisable model (G96) 4 sites	Polarisable model (COS/C) 5 sites	
ρ (kgm ⁻³) density	1489	1504	1489	
ΔH_{vap} (kJmol ⁻¹) heat of vaporisation	33.4	31.2	33.3	
ΔF_{exc} (kJmol ⁻¹) excess free energy	15.3	15.1	16.6	
γ (10 ⁻³ Nm ⁻¹) surface tension	27.2	25.8	28.7	
C_V (Jmol ⁻¹ K ⁻¹) heat capacity	74.7	71.7	73.5	
α_p (10 ⁻³ K ⁻¹) thermal expansion	1.26	1.44	1.29	
κ_T (10 ⁻¹⁰ Pa ⁻¹) compressibility	9.98	14.2	9.2	
$\boldsymbol{\varepsilon}(0)$ dielectric permittivity $\boldsymbol{\varepsilon}(\infty)$	4.81	2.3	3.7 1.2	
$ au_D$ (ps) Debye relaxation time	5.4	4.3	5.6	
D (10 ⁻⁹ m ² s ⁻¹) diffusion	2.3	2.4	2.2	
η (cP) viscosity	0.56	0.48	0.55	

Overall "better" model

parametrised against

Z. Lin et al., Mol. Phys. 108 (**2010**) 1749-1757 I.G. Tironi & WFvG, Mol Phys. 83 (**1994**) 381-403

Properties of non-polarisable and polarisable liquid CCI4


Properties	Experiment	Non-polarisable model (G96) 4 sites (smaller system)	Polarisable model (COS/C) 5 sites (longer simulation)	
ρ (kgm ⁻³) density	1594	1601	1600	
ΔH_{vap} (kJmol ⁻¹) heat of vaporisation	32.4	32.4	32.4	
ΔF_{exc} (kJmol ⁻¹) excess free energy	16.3	15.8	15.8	
γ (10 ⁻³ Nm ⁻¹) surface tension	26.8	28.8	28.8	
$\boldsymbol{\varepsilon}(0)$ dielectric permittivity	2.24	1.0	2.24	
D (10 ⁻⁹ m ² s ⁻¹) diffusion	1.15	1.8	1.9	
η (cP) viscosity	0.96	0.88	0.88	

Better representation of dielectric response

Hydrophobic hydration (argon) in water-ethylene-glycol mixtures

Non-polarisable models versus polarisable models

Only polarisable models reproduce the experimental trend

Inclusion of polarisability in molecular models

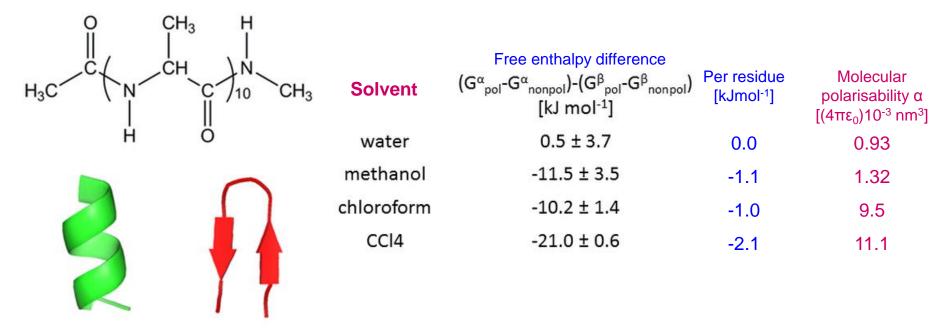
A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models


- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents
- 3. Applications: secondary structure preferences of solutes

D. Representation of entropy

Stabilisation of α-helical versus β-hairpin secondary structure by polarisability of the solvent

A deca-Ala-peptide in water, methanol, chloroform or CCl₄

Free enthalpy difference between *helix* and *hairpin* upon introduction of polarisability into the *solvent*

Polarisability becomes more important for non-polar solvents or environments, e.g. tails of lipids in membranes

Inclusion of polarisability in molecular models

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents
- 3. Applications: secondary structure preferences of solutes

D. Representation of entropy

Energy-entropy compensation in solvents

Atomic-level, fine-grained (FG), (non-)polarisable models Supra-molecular, coarse-grained (CG), polarisable models

		Free energy	Energy	$T \Delta S_{vap}$ $Entropy$
	Name of model	ΔF _{exc} kJ mol ⁻¹	ΔH_{vap} $kJ mol^{-1}$	ΔH_{vap} - ΔF_{exc} $kJ \ mol^{-1}$
Water				
experiment		24.0	44.0	20.0
polarisable FG model	COS/G2	21.8	43.7	21.9
non-polarisable FG model	SPC	23.6	43.9	20.3
polarisable CG model	CGW	11.0	25.9	14.9
Methanol				
experiment		17.8	38.1	20.3
polarisable FG model	COS/M	14.7	37.8	23.1
non-polarisable FG model		16.7	37.9	21.2
polarisable CG model	CGM	7.3	18.0	10.7

Energy – entropy compensation: $T\Delta S_{vap} \approx \frac{1}{2} \Delta H_{vap}$

Supra-molecular (CG) and atomic (FG) polarisable or non-polarisable models of water (H_2O) and methanol (MeOH) must reproduce the entropy/enthalpy ratio of the liquid

Inclusion of polarisability in molecular models

A. Why polarisability?

- 1. Effects of polarisability
- 2. Limitations of non-polarisable force fields

B. Six aspects

- 1. Definition, distinctions, approximations
- 2. Mechanisms
- 3. Three types of treatments
- 4. Three types of models, choices to be made, considerations
- 5. Expressions for the energy and forces (point dipoles)
- 6. Techniques to solve the field equations

C. Charge-on-spring (COS) models

- 1. Equations, parameters, non-linear polarisation
- 2. Applications: liquid water and other solvents
- 3. Applications: secondary structure preferences of solutes

D. Representation of entropy

Accounting for polarisation effects in bio-molecular simulation

For bio-molecular solutes: proteins, DNA, RNA, ...

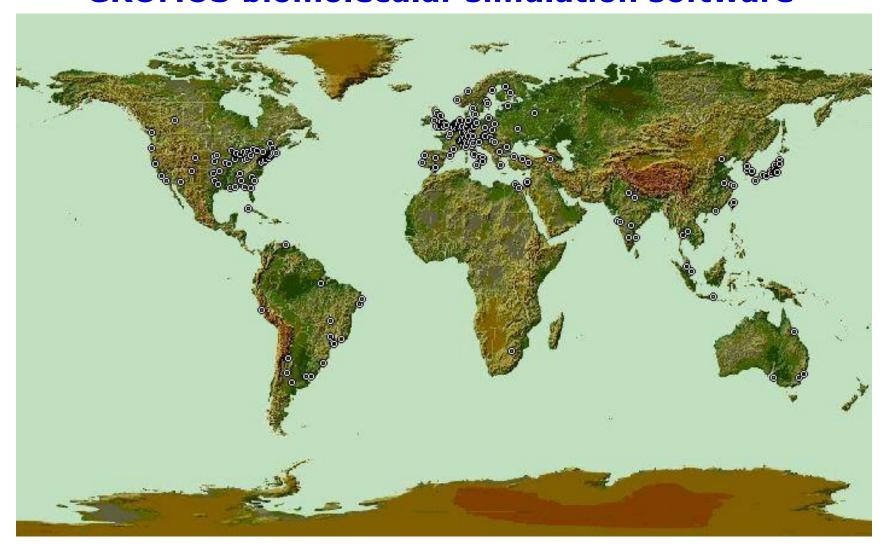
use quantum-chemical models, classical polarisability models are too crude to properly represent the electron redistribution

For solvents and lipids in membranes:

use classical (Charge-On-Spring) models, quantum-chemical models are too expensive or inaccurate

Acknowledgements

Gruppe informatikgestützte Chemie (igc)


http://www.igc.ethz.ch

Associated groups:

- Philippe Hünenberger and co-workers
- Sereina Riniker and co-workers

Spatial distribution of licences GROMOS biomolecular simulation software

GROMOS = Groningen Molecular Simulation + GROMOS Force Field

Generally available: http://www.gromos.net