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Phenomenological derivation of PB

Introduction to Statistical Field-Theory for
Coulombic systems

Steric effects

The dipolar solvent

Short range interactions
Hydration of biopolymers

SAXS profiles

Fluctuations: Sampling the partition function



Coulombic systems and biology

® Biopolymers are charged (DNA, RNA,
proteins)

® Water is the solvent (dipolar)
® Salts and small ions in solution, in channels
® Membranes may be charged

Coulomb interaction drives shape, function,
interaction, organization, etc. of living matter

Important to understand properties of systems with
Coulombic interactions: electrolytes,
polyelectrolytes, colloids, aggregation, amyloids,etc...



® MD simulations require hundred of
thousands of water molecules, ions, etc...

® relaxation time of small ions and molecules
<< relaxation times of biopolymers

® can one simplify the picture by avoiding
simulation of small ions and molecules?



Consider a system of charges in a
solution with dielectric constant €
N; molecules of charge ¢;¢  Fixed charges py (7)

Poisson equation: —V2p(F) = Pcir)

dielectric

where ¢(7) is the electrostatic potential constant

and  pc(7) s the charge density

At thermodynamical equilibrium, the charge density is
given by the sum of the fixed charges and a Boltzmann
distribution
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where 2, = /dgre_ﬁqw@(r) concentration of ion i

In an infinite neutral system: Z; = ‘i/

L ps(T) Cidi€ _Bg;ep(F)
_V? — | giep
P(T) - > e

Example: (1:1) salt
Poisson-Boltzmann equation
r ce
V2 = 2 5% b (Bep(7)




Poisson-Boltzmann

® Very non-linear partial differential equation
(PDE)

® Very few cases are analytically solvable

® a charged plane with counterions (double
layer problem: Gouy-Chapmann) or salt

® a charged cylinder with counterions
(Manning condensation)

® a charged cylinder with salt (implicit very
complicated solution)

® Usually must resort to numerical solution



What is absent from PB

Steric effects: ions are supposed to be point-
like

Water has no structure. It is a continuous
medium. Necessary to treat is as dipoles

Non Electrostatic interactions of water
molecules.

PB is mean-field: may need to include
fluctuations.

® no overcharging, no same charge
attraction



Natural framework to generalize
Poisson-Boltzmann:
Statistical Field Theory of
Coulombic systems.



Why Field-Theory?

Exact Statistical Mechanics formulation of
Coulombic liquids

Derivation of Mean-Field theories
Calculation of fluctuations to all orders

Non-perturbative approaches, Monte Carlo,



Statistical Physics of
charges and dipoles

3N 2,2 N
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where

Charge density N



Field Theory for
Electrolytes

Y % /dﬁ ...dryexp <_§ /drdr’pc(r)vc(r - T/)pc(r/)>

Uc(r) — ! AUC(T) — 5(T)
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Stratanovich-Hubbard = Gaussian identity

exp (=5 [ plryotr - r'>p<r'>) -
[potrrexn (=5 [ararstyo o= rete) +i5 [ ot

Poisson equation for a unit point-like charge:
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Exact Field-Theoretical
representation

/ Dip(r)e— 252 J dr(Ve)?=if | drpc(r)e(r)
Replace p.(r) by its expression, then can do integrals on {7; }

_ / Dip(r)e= 5 1 Ar(Te)* + 5, A [ dre™ 042 i [ dro(r)py (r)



Poisson-Boltzmann
theory

Do Saddle-Point Method on functional integral=
Poisson-Boltzmann equation

Possibility to compute fluctuations systematically
to all orders: the loop-expansion

3/2 . .
— 203 / 303,1/2 Dimensionless
— 0 q coupling constant

plays the role of h



Poisson-Boltzmann with
hard-cores
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-No need for Stern layer
-Possibility to add dipolar
nature of water (see later)



Poisson-Boltzmann with

dipoles
Represent water as permanent point-dipoles (p@, Tz)
Nd I NJ
p(r) == pi-Vor—r)+Y Y giedr—R)+ps(r)
i=1 j=1i=1

—17 3t o(r r 3 sin(Bpo|Vo(r)))
3 [ e oo )> | D



Water + finite size ions
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® With point-like dipolar water, no cation-
anion asymmetry

® By taking finite-size dipoles for water, one
gets a theory similar to non-local

electrostatics (but positive susceptibilities)

® Possibility to generalize to non-permanent
dipoles



PB with dipoles and
Yukawa

7= [arsdress (<2 [arintpopte o)
X exp <_§ /drdr’p(r)vy(r — r')p(r’))

N
water = dlpo!es pe(r) = Z io(r — ;)

hard-cores = lattice gas .
water-water interaction: Yukawa



PB with dipoles and
Yukawa
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Application: hydratation
of proteins

® Fixed protein (taken from the PDB)
® water: dipoles+ Yukawa
® small ions: Na, Cl, ...

® Web Server: PDB Hydro

http://lorentz.immstr.pasteur.fr/pdb_hydro.php



http://lorentz.immstr.pasteur.fr




Compute:
-hydrophobicity profiles
-ion profiles
-solvation free energies

Hydrophobic regions (red) of a Thymidine Kinase
Validated by comparison with all atom MD simulations

Working include Gaussian vibrations of protein



Aquasax

® Compute SAXS profiles of given protein
structures.

® Given a protein structure, compute the
hydration layer

® Compute the corresponding SAXS profile

® \VWeb server:

http://lorentz.dynstr.pasteur.fr/aquasaxs.php
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Effects of fluctuations:
Beyond Poisson-Boltzmann

It is possible to compute the corrections to

one loop order in simple cases:
EDL (with R. Netz), ...

What happens when one adds salt to a
dielectric fluid?

® Dielectric constant is the response of the
system to an external electric field.

® Water has a high dielectric constant
because water molecules are dipoles and
can orient in an external electric field.



® When one adds ions in the solution, they
polarize the water molecules

\l/

Hydration/ / I \

shell

Polarized water molecules are less orientable and
contribute less to the dielectric constant

» dielectric constant decrement



A single ion in a dipolar liquid

® Assume low ion concentration. One can
look at a single ion in water

_EOVE = ndeV ' {EA'G(ﬁp()E)} + ,Of(I').
pr(r) = qo(r).
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u u
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Scale of hydration shell




Average dielectric constant over a sphere of radius equal to
the typical distance between ions

1
R — 5(263)_1/3

40 | | | | | J

RbCl and CsCl in water



The field-theoretic approach

No ion interaction effect
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Gibbs free energy
GU(r) = Flp@)] - / & U(r)p(r)

_ OF[p(r)]
i) = op(r)

__OG[Y(r)]
) = e

Dielectric tensor
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Here, dielectric tensor is diagonal



Mean-Field level

BGppe|¥] = _%(V\I’y — 2¢ cosh(feW) — CdQ(“)?

u = BpoVV¥(r), u = |ul|, and g(u) = sinhu/u.

eoV2U = 2¢.esinh (BeW)— capoV - [;;g(ﬁpoyv\m)l

G = ¢'(u) = coshu/u — sinh u/u?

Epps — €0 T 6}?(2)661/3

The dielectric constant is the coefficient of the square
gradient term.
No effect of the ions on the dielectric constant at
mean-field level



One loop correction

AGY(r)] = %Tr log [—e0V? + 2);3e” cosh(Be¥ (r))
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lons and dipole fugacities must be also computed to
one-loop order
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® Regularization of short distance
divergences through cut-off a. Final one-
loop result

Fluctuations of water

€ — € pn = Agg + Acy: /
(EDPB — 80)2 47

Aeq = £ 3cqa’
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Effect of Salt



Results
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FIG. 2: (color online). Comparison of the predicted dielectric constant, €, from Eq. (16) with experimental data from Ref. [19],
as function of ionic concentration, ¢, for various salts. The theoretical prediction (solid line) was calculated using a as a fitting
parameter. In (a) the fit is for RbCl and CsCl salts with a = 2.66 A; in (b) the fit is for KF and KCl with a = 2.64 A; while in (c) the
fit is for LiCl, Nal and NaCl with a = 2.71 A. The dashed lines are the linear fit to the data in the low c¢; < 1 M range. The slope of
the linear fit is v/co = 11.7M ™" in (a), 9.0M~ ! in (b) and 13.8 M~ in (c). The value of v for each salt varies by about 10-20 %
and the linear fit should be taken as representative of the low cs; behavior.



Beyond one-loop

® Quadratic fluctuations are OK if coupling
constant not too strong.

® For large coupling constant, no good theory.
Perform Monte Carlo or Langevin
simulations.

® Action is complex!

7 = /DSD(’F)G— 220 [dr(Ve)>+30, A [ dre™ P49 i [ dro(r)ps(r)



Local Langevin dynamics
for Electrolytes

7 = H % /drl ...dry exp (-5 /drdr’pc(r)fvc(r — r’)pc(r’)>
Z o(r)

Av.(r) =

Zanz _|_/0f

Constrain the mtegratlon over N;(7T) bya d function
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The integral on ¥:(7) can be done to any order by the
saddle-point method. To lowest-order:
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with Coulomb energy

DFT /
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General Langevin Equation

dni(T’, t) o / / (55(71@(7”‘, t)) L M.
s —/dfrdfr D(r,r") (1) n:(r,t)

with (n;(r,t)) =0

<77i (Tv t)nj (Tlv t/)> — 25ij5(t o t/)D(T7 T/)

where D(r,7") is any positive definite operator

One can then prove that detailed balance is satisfied

So one can sample the Boltzmann distribution with
this equation



Model A: D(r,r") = Dé(r — ')

@ =P (qu'/dr ve(r = 17) (Z%”ﬂ py(r")) +log nA()> e

Problem:VERY non local due to Coulomb interaction



Model B: D(r,7") = Dv. '(r — ')

Everything becomes local!!!

dmg’ D _p (V (a(r) (V1og nz(; t))> —Bai(3_ aims(rt) + Pf(r))> + V&i(r 1)

J

& )1 1)) = 2D 800 b(r — 1)5(t — ')

No Ewald sums
Non locality = Laplacian



Application: like-charge attraction

Two ions of same charge g in a multivalent 3:/ salt

(suun 13 ul) 4Nd




Conclusion

It is possible to include ion-size, dipolar
water, etc...at mean-field level, for any
geometry

It is possible to account for fluctuations with
local Langevin equations

Apply to more systems, in particular
biopolymers

Apply to Molecular Dynamics of
biopolymers

Exact dynamics in local formulation



