## ELECTRON-ELECTRON INTERACTIONS, SCREENING AND POLARIZABILITY

**GRAPHENE AND SEMICONDUCTOR QDOTS** 

## **IN SEMICONDUCTOR AND**

#### **GRAPHENE QDOTS**

I.OZFIDAN(1,5), P. POTASZ(1,3), A.D.GUCLU(1,4), M. KORKUSINSKI(2), O. VOZNYY(1,6), P. HAWRYLAK(1)

DEPARTMENT OF PHYSICS, UNIVERSITY OF OTTAWA, OTTAWA, CANADA
 EMERGING TECHNOLOGIES DIVISION, NRC, OTTAWA, CANADA
 INSTITUTE OF PHYSICS, WROCLAW UNIVERSITY OF TECHNOLOGY, POLAND
 INSTITUTE OF PHYSICS, IZMIR INSTITUTE OF TECHNOLOGY, IZMIR, TURKEY
 5 DEPARTMENT OF PHYSICS, UNIVERSITY OF ALBERTA
 6. EC, UNIVERSITY OF TOTONTO



## SEMICONDUCTOR AND GRAPHENE QUANTUM DOTS

#### InAs QD IN InP NWIRE CONTROL OF HEIGHT, DIAMETER, SHELL

> dot

nanowire core PHOTONS FOR QCOMMUNICATION

#### HgTe QDOTS: QDOTS IN TOPOLOGICAL INSULATORS ROBUST EDGE STATES-SENSORS



#### PRINTABLE



**GRAPHENE QDOTS** – ATOMIC CONTROL OF HEIGTH:







#### OUTLINE

**INTRODUCTION** 

**SCREENING IN QUANTUM DOTS (cRPA)** 

**GRAPHENE QDOTS:** 

**BANGAP, EXCITONS AND BIEXCITONS** 

SUBLATTICE ENGINEERING-MAGNETIC MOMENT AND E-E CORRELATIONS



# 2D ELECTRON GAS

#### **ELECTRON-ELECTRON INTERACTIONS?** 2DEG OF SCHRODINGER FERMIONS

 $H = \sum_{i} \frac{1}{2m} \left( -\frac{\partial^{2}}{\partial \vec{r}_{i}^{2}} \right) + \sum_{i < j} \frac{e^{2}}{\varepsilon |\vec{r}_{i} - \vec{r}_{j}|}$  $H = Ry\left(\sum_{i} \left( -\frac{\partial^{2}}{\partial \vec{r}_{i}^{2}} \right) + \sum_{i < j} \frac{2}{|\vec{r}_{i} - \vec{r}_{j}|} \right)$  $H = \left(\sum_{i} \frac{1}{r_{s}^{2}} \left( -\frac{\partial^{2}}{\partial \vec{r}_{i}^{2}} \right) + \frac{1}{r_{s}} \sum_{i < j} \frac{2}{|\vec{r}_{i} - \vec{r}_{j}|} \right)$  $H = \frac{1}{r_{s}^{2}} \left(\sum_{i} \left( -\frac{\partial^{2}}{\partial \vec{r}_{i}^{2}} \right) + r_{s} \sum_{i < j} \frac{2}{|\vec{r}_{i} - \vec{r}_{j}|} \right)$ 

e- *r*s ee- e- e-

uOttawa L'Université canadienne Canada's university

**PERTURBATION THEORY IN RS** 

## ELECTRON-ELECTRON INTERACTIONS

2D ELECTRON GAS

**2DEG OF SCHRODINGER FERMIONS-PERTURBATION THEORY** 

 $E_{k} = \xi_{k}^{e} + \Sigma_{e}(k, \xi_{k}^{e})$   $Im\Sigma_{e}(k, \xi_{k}^{e}) = \int_{0}^{\infty} \frac{d \, qq^{\Omega}}{2\pi} \int_{0}^{(k,q)} \frac{d\omega}{2\pi} \frac{\{1 - f(\xi_{k}^{e} - \omega) | \{-2 \, Im W_{ee}(q, \omega)\}\}}{2\pi \sqrt{[\omega - \Omega_{-}(k,q)][\Omega_{+}(k,q) - \omega]}}$ SCREENED INTERACTION W  $RPA: Im(W(q, \omega)) = Im\{W^{0}/(1 - W^{0}\Pi^{0})\}$   $LOCAL FIELD CORRECTION W_{0} \Rightarrow W_{0}(1 - G)$ VNS: Im(W(q, \omega))

$$= \operatorname{Im} \{ W^{0}(1-G) / [1-W^{0}(1-G)\Pi^{0}] \}$$

١.

#### **ELECTRON-ELECTRON INTERACTIONS 2DEG OF SCHRODINGER FERMIONS-PERTURBATION THEORY**

2D ELECTRON GAS

 $E_k = \xi_k^e + \Sigma_e(k, \xi_k^e)$ 



Local field G

**Renormalization** of Plasmon energy

Renormalization of el Plasmon coupling

WITH JEFF YOUNG



# 2D ELECTRON GAS

#### **ELECTRON-ELECTRON INTERACTIONS?** 2DEG OF SCHRODINGER FERMIONS

$$H = \sum_{i} \frac{1}{2m} \left(-\frac{\partial^2}{\partial \vec{r}_i^2}\right) + V_{lattice}(\vec{r}_i) + \sum_{i < j} \frac{e^2}{\varepsilon |\vec{r}_i - \vec{r}_j|}$$

Lattice dominates



$$K^*p$$
$$H = \sum_{i} v_F \vec{\sigma} \left(-\frac{\partial}{\partial \vec{r}_i}\right) + \sum_{i < j} \frac{e^2}{\varepsilon |\vec{r}_i - \vec{r}_j|}$$



#### ELECTRON-ELECTRON INTERACTIONS? 2DEG OF DIRAC FERMIONS Kotov, Castro-N

**2DEG OF DIRAC FERMIONS** 

$$H = \sum_{i} v_F \vec{\sigma} \left(-\frac{\partial}{\partial \vec{r}_i}\right) + \sum_{i < j} \frac{e^2}{\varepsilon |\vec{r}_i - \vec{r}_j|}$$

Kotov,Castro-Neto, Uchoa,Vozmedano, Guinea,DasSarmaí í .

$$H = \sum_{i} \frac{1}{r_s} v_F \vec{\sigma} \left(-\frac{\partial}{\partial \vec{r_i}}\right) + \frac{1}{r_s} \sum_{i < j} \frac{e^2}{\varepsilon |\vec{r_i} - \vec{r_j}|}$$

$$H = \left(\frac{1}{r_s}v_F\right)\left(\sum_i \vec{\sigma}\left(-\frac{\partial}{\partial \vec{r_i}}\right) + \frac{e^2}{2\varepsilon v_F}\sum_{i< j}\frac{2}{|\vec{r_i} - \vec{r_j}|}\right)$$



INDEPENDENT OF RS – DEPENDS ON SCREENING



#### OUTLINE

#### **INTRODUCTION**

**SCREENING IN QUANTUM DOTS (cRPA)** 

**GRAPHENE QDOTS:** 

**BANGAP, EXCITONS AND BIEXCITONS** 

SUBLATTICE ENGINEERING-MAGNETIC MOMENT AND E-E CORRELATIONS





**Qdot Hamiltonian** 

$$\hat{H}_0 = \sum_i \varepsilon_i c_i^+ c_i^- + \sum_{i,j} t_{j,i} c_j^+ c_i^-$$

may include Pz (relevant) and Sigma (irrelevant) orbitals Qdot energy spectrum and wavefunctions  $H_0\varphi_i^0 = \varepsilon_i^0\varphi_i^0$ 

Introduce small *total* perturbation V  $H = H_0 + \delta \cdot V$ 

Calculate perturbatively wavefunctions and energy levels of H

$$H\varphi_i = \mathcal{E}_i \varphi_i$$

$$\varphi_i = \varphi_i^0 + \delta \varphi_i^1 + \dots \qquad \qquad \varepsilon_i = \varepsilon_i^0 + \delta \varepsilon_i^1 + \dots$$



Calculate perturbatively wavefunctions and energy levels of H

$$\varphi_i(r) = \varphi_i^0(r) + \sum_{j \neq i} A_j^i \varphi_j^0(r)$$

$$\varphi_i(r) = \varphi_i^0(r) + \sum_{j \neq i} \frac{\langle j | V | i \rangle}{\varepsilon_i - \varepsilon_j} \varphi_j^0(r)$$

Calculate charge density induced by perturbation V (there are N electrons or N occupied states)

$$\rho(r) = \sum_{i=1}^{N} \varphi_i^*(r) \varphi_i(r)$$



Calculate charge density induced by perturbation V

$$\rho(r) = \sum_{i=1}^{N} \varphi_i^*(r) \varphi_i(r)$$

$$\rho(r) = \sum_{i=1}^{N} (\varphi_i^0(r) + \sum_{k \neq i} \frac{\langle k | V | i \rangle}{\varepsilon_i - \varepsilon_k} \varphi_k^0(r)) * (\varphi_i^0(r) + \sum_{j \neq i} \frac{\langle j | V | i \rangle}{\varepsilon_i - \varepsilon_j} \varphi_j^0(r))$$

induced charge density is given by

$$\delta n(r') = \sum_{i,k;i\neq k} \left( \frac{f(\varepsilon_i) - f(\varepsilon_k)}{\varepsilon_i - \varepsilon_k} < i | V | k > \varphi_k^0(r') * \varphi_i^0(r') \right)$$
polarizability
$$\delta n(r') = \sum_{i,k;i\neq k} \left( \prod_{ik}^0 < i | V | k > \varphi_k^0(r') * \varphi_i^0(r') \right)$$

U Ottawa L'Université canadienne Canada's university

induced charge density is proportional to applied total but weak potential

$$\delta n(r') = \sum_{i,k;i\neq k} \left( \prod_{ik}^{0} < i \, | \, V \, | \, k > \varphi_{k}^{0}(r') * \varphi_{i}^{0}(r') \right)$$

Induced charge density produces induced potential dV

Total potential V is a sum of external potential and induced potential

 $V(r) = V^{ext}(r) + \delta V(r)$ 

$$V(r) = V^{ext}(r) + \int dr' V^0(r,r') \delta n(r')$$

V0 may include image charges



induced charge density is proportional to applied total weak potential  $V(r) = V^{ext}(r) + \int dr' V^0(r,r') \delta n(r')$ 

$$\delta n(r') = \sum_{i,k;i\neq k} \left( \prod_{ik}^{0} < i | V | k > \varphi_{k}^{0}(r') * \varphi_{i}^{0}(r') \right)$$

Take matrix elements of total potential, we end up with integral equation

$$\langle i | V | j \rangle = \langle i | V^{ext} | j \rangle + \sum_{k,l} \langle ik | V^0 | lj \rangle \prod_{kl}^0 \langle k | V | l \rangle$$

$$V = V^{ext} + V^0 \prod^0 V$$

$$V - V^0 \prod^0 V = V^{ext}$$
Screened RPA interaction
$$V = \frac{V^{ext}}{1 - V^0 \prod^0} \qquad V = \frac{V^{ext}}{\varepsilon}$$



#### OUTLINE

#### **INTRODUCTION**

#### **SCREENING IN QUANTUM DOTS (cRPA)**

**GRAPHENE QDOTS:** 

**BANGAP, EXCITONS AND BIEXCITONS** 

SUBLATTICE ENGINEERING-MAGNETIC MOMENT AND E-E CORRELATIONS





#### **GOAL FOR GRAPHENE QUANTUM DOTS**

#### **DEMONSTRATE CARBONONICS:**

#### ELECTRONICS, PHOTONICS AND SPINTRONICS IN A SINGLE MATERIAL USING

#### LATERAL SIZE, SHAPE, EDGE, SUBLATTICE AND NUMBER OF LAYERS ENGINEERING OF GRAPHENE

#### **INTEGRATE** THESE FUNCTIONALITIES AT THE NANOSCALE GRAPHENE INTEGRATED <u>QUANTUM</u> CIRCUIT

u Ottawa

I.Ozfidan, D.Guclu, P.Potasz, M.Korkusinski, í PH



#### **GRAPHENE QUANTUM DOTS SELECTED REFERENCES**

1. P. Hawrylak, "Surface Plasmons in Intercalated Graphite", Solid State Com. <u>63</u>, 241 (1987).

2. A.D. Guclu, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak,ö Magnetism and correlations in fractionally filled degenerate shells of graphene quantum dotsö, Phys.Rev.Letters, **103**, 246805 (2009).

1. Oleksandr Voznyy, Alev Devrim Güçlü, Pawel Potasz, Pawel Hawrylak, õEffect of edge reconstruction and passivation on zero-energy states and magnetism in triangular graphene quantum dots with zigzag edgesö, Phys.Rev.**B83**, 165417 (2011).

1. P. Potasz, A. D. Güçlü, A.Wojs and P. Hawrylak, õ Electronic properties of gated triangular graphene quantum dots: magnetism, correlations and geometrical effectsö, Phys. Rev. B **85**, 075431 (2012).

1. D.Guclu and P.Hawrylak, õOptical control of magnetization and optical spin blockade in triangular graphene quantum dotsö, Phys. Rev. **B**87, 035425 (2013).

1. D.Guclu, M.Grabowski and P.Hawrylak, õElectron-electron interactions and topology in the electronic properties of gated graphene nanoribbon rings in Mobius and cylindrical configurationsö, Phys.Rev. **B**87, 035435 (2013).

1. D.Guclu, P. Potasz and P.Hawrylak, Zero-energy states of graphene triangular quantum dots in a magnetic fieldö, Phys.Rev. B88 155429 (2013)

2. I.Ozfidan, M. Korkusinski, A.D.Guclu, J.McGuire and P.Hawrylak, õ Micoscopic theory of optical properties of colloidal graphene quantum dot Phys. Rev. B89,085310 (2014).

1. I.Ozfidan, M. Korkusinski and P.Hawrylak, õTheory of Biexcitons and Biexciton-Exciton Cascade in Graphene Quantum Dotsö, Phys.Rev.B91, 115314(2015).

1. Cheng Sun, Florian Figge, I.Ozfidan, M. Korkusinski, Xin Yan, Liang-shi Li, Pawel Hawrylak and John A. McGuire, Biexciton binding in colloidal graphene quantum dotsö, NanoLetters 15,5742(2015).

1. Devrim Guclu, Pawel Potasz, Marek Korkusinski and Pawel Hawrylak,öGraphene Quantum Dotsö, Springer-Verlag (2014).

2. P Hawrylak, F Peeters, K Ensslin, Editors, õCarbononicsóintegrating electronics, photonics and spintronics with graphene quantum dotsö, Focus issue, Physica status solidi (RRL)-Rapid Research Letters 10 (1), 11 (2016).







#### **PHOTONICS** WITH GRAPHENE QUANTUM DOTS

#### MAKING A SEMICONDUCTOR OUT OF A SEMIMETAL

**OPENING A GAP** 



#### BANDGAP ENGINEERING IN GRAPHENE QUANTUM DOTS

#### **BAND GAP AS A FUNCTION OF SIZE**



#### BANDGAP ENGINEERING IN GRAPHENE QUANTUM DOTS

#### **BANDGAP COMPARISON WITH SEMICONDUCTORS**



#### **BANDGAP ENGINEERING WITH COMPOUND SEMICONDUCTORS**



#### **ELECTRONIC PROPERTIES OF GRAPHENE QUANTUM**

#### **BANDGAP DEPENDS ON SIZE, EDGE AND SHAPE**

ITAWA

![](_page_22_Figure_2.jpeg)

#### ELECTRONIC PROPERTIES OF GRAPHENE QUANTUM DOTS

#### **BANDGAP DEPENDS ON e-e INTERACTIONS**

![](_page_23_Figure_2.jpeg)

#### ELECTRONIC PROPERTIES OF GRAPHENE QUANTUM DOTS

#### **BANDGAP DEPENDS ON SIZE, EDGE AND SHAPE**

![](_page_24_Figure_2.jpeg)

#### **COLLOIDAL GRAPHENE QUANTUM DOTS**

**OPTICAL PROPERTIES OF GRAPHENE QUANTUM DOTS** 

C132

**Broken symmetry** 

**C168** 

Number of C atoms – 168 Edges – mixed zigzag-armchair Edges – H passivation

![](_page_25_Picture_5.jpeg)

Colloidal Graphene Quantum Dots with Bell-Demotion of the second structures and the second structures of the second structures and structures of the second structures and structures and

## **OPTICAL PROPERTIES OF GRAPHENE QUANTUM DOTS Methodology: Tb+HF+CI** Pz orbitals only $= \sum_{\langle i, j \rangle} t_{ij} c_{i\sigma}^{+} c_{j\sigma}$ t - tunneling $+ \frac{1}{2} \sum_{ijkl \sigma\sigma} \langle ij | V | kl \rangle c_{i\sigma}^{+} c_{j\sigma}^{+} c_{k\sigma} c_{l\sigma}$ e-e interactions

$$< ij | V | kl >= \iint dr_1 dr_2 \phi_i^*(r_1) \phi_j^*(r_2) e^2 \phi_k(r_2) \phi_l(r_1)$$

Slater-Koster orbitals

 $\kappa$ -screening by sigma electrons and surrounding fluid

![](_page_26_Picture_4.jpeg)

D.GUCLU, P.POTASZ, M.KORKUSINSKI, O.VOZNYY, PH, PRL2009

![](_page_27_Figure_0.jpeg)

Correlated ground and excited states

$$|\alpha\rangle = (A^{\alpha} + \sum_{i,j} B^{\alpha}_{ij} b^{+}_{i\sigma} b_{j\sigma'} + \sum_{ijkl\sigma\sigma'} C^{\alpha}_{ijkl} b^{+}_{i\sigma} b^{+}_{j\sigma'} b_{k\sigma'} b_{l\sigma} + \sum_{ijklmn\sigma\sigma'\sigma''} D^{\alpha}_{ijkl} b^{+}_{i\sigma} b^{+}_{j\sigma'} b_{k\sigma''} b_{l\sigma''} b_{m\sigma'} b_{n\sigma} +) |GS_{HF}\rangle$$

![](_page_27_Picture_3.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

#### GROUND STATE OF C168 AS A FUNCTION OF STRENGTH OF ELECTRON-ELECTRON INTERACTIONS

![](_page_28_Picture_3.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

L'Université canadienne Canada's university

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Picture_1.jpeg)

#### OPTICAL PROPERTIES OF C168 IN SEMIMETALLIC REGIME

![](_page_32_Picture_3.jpeg)

![](_page_33_Figure_0.jpeg)

Ef **Tb and HF gaps almost identical** 

VB

![](_page_33_Picture_3.jpeg)

Ozfidan.Guclu.Korkusinski.PH

tb+HF

62

64

66

68

70

72

index

74

76

78

80

82

84

Energy (eV)

0

-2 -

-4 + 60

![](_page_34_Figure_0.jpeg)

### **OPTICAL PROPERTIES OF GRAPHENE QUANTUM DOTS**

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

**DEGENERACY : VALLEY DEGENERACY / C3 SYMMETRY** 

![](_page_36_Figure_2.jpeg)

$$\begin{split} \Psi_{j}^{m} &= \frac{1}{\sqrt{3}} \sum_{\beta = 0,1,2} e^{i\beta \cdot m \cdot 2\pi/3} |j_{\beta}\rangle \\ & \text{m=0,+1,-1} \\ \text{Degeneracy m=+/-1} \quad \begin{array}{c} \text{or} \\ \text{m=0,1,2} \\ \end{array} \end{split}$$

$$\langle m, i | \vec{E} \cdot \vec{r} | m', j \rangle = \delta_{m', m \pm 1} D_{m, m', i, j}$$

#### **Optical selection rules**

 $\Delta m = \pm 1$ 

![](_page_36_Picture_7.jpeg)

## **OPTICAL TRANSITIONS IN GRAPHENE QUANTUM DOTS**

![](_page_37_Figure_1.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

#### OPTICAL PROPERTIES OF C168 IN SEMIMETALLIC REGIME

#### SINGLET/TRIPLET EXCITONS AT THE BAND EDGE

![](_page_38_Picture_4.jpeg)

![](_page_39_Figure_0.jpeg)

## **OPTICAL PROPERTIES OF GRAPHENE QUANTUM DOTS**

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

## **OPTICAL PROPERTIES OF GRAPHENE QUANTUM DOTS**

![](_page_42_Figure_1.jpeg)

![](_page_43_Figure_0.jpeg)

L'Université canadienne Canada's university

## **OPTICAL PROPERTIES OF GRAPHENE QUANTUM DOTS**

#### ABSORPTION Ó THEORY VS EXPERIMENT Singlet-triplet splitting too small?

 $\kappa = 5, t = -4.2 eV$ Absorption (arb. units) C168 %10 of the highest absorption peak has been assigned to absorption of dark singlets Absorption C132 Absorption (arb. units) **Triplet Levels** Singlet Absorption Peaks Absorption (Experiment) 1.5 2.5 3.0 2.0 3.5 Energy (eV)

#### **BLUE SHIFT**

![](_page_44_Figure_4.jpeg)

![](_page_44_Picture_5.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

#### **TRANSIENT ABSORPTION-DETECTION OF** EXCITED X\* AND XX IN GRAPHENE QUANTUM DOTS

![](_page_47_Figure_1.jpeg)

![](_page_47_Figure_2.jpeg)

J.McGuire et al

#### DETECTING EXCITED X AND XX STATES

#### NanoLetters 2015

![](_page_47_Picture_6.jpeg)

## BIEXCITON-EXCITON CASCADE IN GRAPHENE QUANTUM DOTS XX – X CASCADE FOR ENTANGLED

![](_page_48_Figure_1.jpeg)

**PHOTON PAIR GENERATION** 

![](_page_48_Picture_2.jpeg)

![](_page_49_Picture_0.jpeg)

#### NO SIGN OF EXCITON CONDENSATION BUT STRONG X\_X INTERACTION

![](_page_49_Picture_2.jpeg)

![](_page_50_Picture_0.jpeg)

#### OUTLINE

#### **INTRODUCTION**

#### **SCREENING IN QUANTUM DOTS (cRPA)**

**GRAPHENE QDOTS:** 

**BANGAP, EXCITONS AND BIEXCITONS** 

**SUBLATTICE ENGINEERING-MAGNETIC MOMENT AND E-E CORRELATIONS** 

![](_page_50_Picture_7.jpeg)

![](_page_51_Picture_0.jpeg)

#### SPINTRONICS RESTS ON LIEB'S THEOREM

#### GROUND STATE SPIN OF A HUBBARD MODEL ON BIPARTITE LATTICE S=Na-Nb

#### **SPINTRONICS = SUBLATTICE ENGINEERING**

![](_page_51_Picture_4.jpeg)

![](_page_52_Picture_0.jpeg)

Edge spin Polarization No gap Gap but AF Coupling No net spin BROKEN SUBLATTICE SYMMETRY Ferromagnetic coupling Coupling Max spin

![](_page_52_Picture_4.jpeg)

![](_page_53_Figure_0.jpeg)

Voznyy, Guclu.. PH PRB2011

![](_page_54_Picture_0.jpeg)

#### **GRAPHENE QDOTS**

#### TURNING OFF MAGNETISM WITH GATE(VOLTAGE)

![](_page_54_Picture_3.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_55_Picture_1.jpeg)

#### VOLTAGE CONTROL OF CHARGE DENSITY AND MAGNETIC MOMENT

![](_page_55_Figure_3.jpeg)

![](_page_55_Picture_4.jpeg)

### FILLING UP ZERO-ENERGY HF SHELL

## TOTAL SPIN OF ELECTRONS ON A DEGENERATE SHELL

![](_page_56_Figure_2.jpeg)

HALF FILLED SHELL SPIN POLARISED AS IN DFT/MEAN-FIELD Ezawa; Fernandez-Rossier&Palacios; Kaxiras et al

![](_page_56_Picture_4.jpeg)

FILLING UP ZERO-ENERGY HF SHELL

#### ADDING A SINGLE ELECTRON DEPOLARISES HALF FILLED SPIN POLARISED SHELL!

![](_page_57_Picture_2.jpeg)

![](_page_57_Figure_3.jpeg)

![](_page_57_Picture_4.jpeg)

![](_page_57_Picture_5.jpeg)

![](_page_58_Picture_0.jpeg)

#### **PHOTONICS AND SPINTRONICS**

#### **GRAPHENE QDOTS**

#### TURNING OFF MAGNETISM WITH GATE AND LIGHT

**OPTICAL SPIN BLOCKADE** 

![](_page_58_Picture_5.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Picture_0.jpeg)

#### SUMMARY

#### SCREENING IN SEMICONDUCTOR QUANTUM DOTS (cRPA)

**GRAPHENE QDOTS:** 

#### **BANGAP, EXCITONS AND BIEXCITONS**

**SUBLATTICE ENGINEERING - MAGNETIC MOMENT, ZERO ENERGY SHELL AND E-E CORRELATIONS, e-e AND VPEG IN WS2** 

![](_page_61_Picture_6.jpeg)

#### **GRAPHENE AND SEMICONDUCTOR QDOTS**

#### ELECTRON-ELECTRON INTERACTIONS, SCREENING AND POLARIZABILITY IN SEMICONDUCTOR AND GRAPHENE QDOTS I.OZFIDAN(1,5), P. POTASZ(1,3), A.D.GUCLU(1,4), M. KORKUSINSKI(2), O. VOZNYY(1,6), P. HAWRYLAK(1)

DEPARTMENT OF PHYSICS, UNIVERSITY OF OTTAWA, OTTAWA, CANADA
 EMERGING TECHNOLOGIES DIVISION, NRC, OTTAWA, CANADA
 INSTITUTE OF PHYSICS, WROCLAW UNIVERSITY OF TECHNOLOGY, POLAND
 INSTITUTE OF PHYSICS, IZMIR INSTITUTE OF TECHNOLOGY, IZMIR, TURKEY
 5 DEPARTMENT OF PHYSICS, UNIVERSITY OF ALBERTA
 6. EC, UNIVERSITY OF TOTONTO

![](_page_62_Picture_3.jpeg)